
Management / H. Morgan
Data Base Systems Editor

A Data Definition and
Mapping Language
Edgar H. Sibley
University of Michigan
and
Robert W. Taylor
University of Massachusetts

A data definition language is a declarative computer
language for specifying data structures. Most data
definition languages concentrate on the declaration of
logical data structures with little concern for how these
structures are physically realized on a computer system.
However, the need for data definition languages which
describe both the logical and physical aspects of data is
increasingly apparent. Such languages will be a key
element in the translation of data between computer
systems, as well as in advanced data management sys-
tems and distributed data bases.

This paper reviews past work in the data definition
language for describing both logical and physical as-
pects of data. Applications of these "generalized"
data definition languages are also discussed.

Key Words and Phrases: data definition language,
data and storage structure, data translation, data base
management systems, file translation

CR Categories: 3.51, 3.70, 3.73, 4.29, 4.82

1. lrltroouctlton

From the earliest days of computing, the concept of
formats for data input and output has been commonly
used. These formats aided the programmer by simpli-
fying his description of the input and output of data.
By using logical device-oriented read and write state-
ments, he was further/ 'reed from details specific to par-
ticular devices. This meant that the programmer needed
to know f?wer implementational details of specific
media. The resulting device-independence, along with
" c o m m o n " and standard languages, makes it feasible
to run a given program on various hardware. Unfortu-
nately, the same cannot be said for data. Only in the
most restricted cases is it possible to have a program at
one installation process data which was created at
another. Tiffs stems primarily from a lack of explicit
definition of the data to be processed.

Furthermore, the need for generalized data base
management systems which can communicate either
with similar or with different systems, possibly over
computer networks with distributed data bases, again
demands an explicit definition of the data.

Transferring data between dissimilar computers is
not the only problem; a problem also arises when we
transfer between hardware lines supplied by the same
manufacturer, and sometimes we find substantial
changes in storage and access methodology in different
versions of the same operating systems?

The need for explicit definition has led several com-
mittees to start considering a language and technology
for describing "storage structures." If a language can be
developed to describe storage formats in sufficient de-
tail, statements in the language can then be used as in-
put to programs which would reorganize a file or trans-
form the file into a format suitable for use by other
hardware or software systems.

This paper will review efforts currently under way in
describing file or storage structure languages, provide a
basis for continuing such work, and give an example of
statements in a language which satisfies some of these
needs.

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Research partially sponsored by the Air Force Office of Scien-
tific Research, Air Force Systems Command, USAS, under Grant
No. AFOSR-72-2219. Authors' addresses: Edgar H. Sibley, De-
partment of Information Systems Management, University of Mary-
land, College Park, MD 20742; Robert W. Taylor, Department
of Computer Sciences, University of Massachusetts, Amherst, MA
01002.

750

2. Related Work

Several professional groups and individual re-
searchers have made preliminary attempts to define
languages for describing the structure and storage of
data. Although this section is not exhaustive, it is in-
tended to cover the major contributions in the area.

2.1. ANSI X3 Ad Hoc Committee
In October 1968, an ad hoc committee was formed

by the ANS~ X3 group, under the direction of John
Gosden, to define the scope of a data definition lan-
guage and to recommend to X3 what standard work
should be done on data definition languages. The Gosden

Communications December 1973
of Volume 16
the ACM Number 12

report [1] represents a synthesis of key members' views.e
Although it has been acknowledged by X3, the report
has been neither approved nor rejected by ANSI. Gosden
proposed that a formally defined data definition lan-
guage, describing data on both the logical and physical
Ievel, would be an appropriate candidate for standardi-
zation. Unfortunately, the X3 ad hoc committee dis-
banded, implying it was premature to standardize since
.extensive development was needed.

2.2. European Computer Manufacturers Association
Other related standards work on data definition lan-

guages was performed by the members of Task Group 2
(To2) of Technical Committee 15 of the European
Computer Manufacturers Association (ECMA/TCI5/
TG2). They started to define a Data Description Lan-
guage (DDL) for formats. Their objective was to formu-
late a concise method of defining the format of a collec-
tion of data to facilitate the interchange of standard de-
fined formats.

In their preliminary draft [3], both an informal and a
formal syntax and elements of the semantics of a pro-
posed DDL were presented for describing data format
specifications. A format specification is "the definition
of a collection of character strings, each of which is a
data item to which the format may be applied." The
~)DL includes the basic operations of set theory: concat-
enation, intersection, and union. Further, by recursively
applying the concatenation operations, tree-like format
structures (called hierarchy platforms) could be built.
The ECMA/TC15 work represents a good start, but un-
fortunately it is not continuing because ECMA decided
that developmental activity was needed before further
standardization could be proposed.

2.3. CODASYL Activities
Within the Conference on Data Systems Languages

(CODASYL), several data definition language efforts
(with distinctly different objectives) emanate from differ-
ent committees. In April 1971, the Data Base Task
Group (DBTG), a group working under the Programming
Language Committee, specified a data definition lan-
guage to enhance the data structure capabilities of pro-
gramming languages [4]. COBOL was chosen as the first
language to be enhanced. The DDL defined by the DBTG
is directed toward specifying network or graph-type
data structures not currently specifiable in COBOL and
other compiled languages. In addition to extending the
domain of the data structures, the DBTG proposal goes
further and defines a data manipulation language to
access or process the data defined by the DDL. Although
the language extends the data structures available to a
COBOL programmer, there are no statements to define
the storage implementation of data. Hence, the storage

i In one release of a current operating system, Fortran-generated
output could not be read using the same format statement in a pro-
gram compiled on the following release.

Gosden/has also discussed these issues in [2].

77511.

structure is leR up to the desires of the implementor,
which negates use of the ODE for data interchange. Much
of the work of the DBTG has now been charged to a
new Data Definition Language Committee (ODLC),
which has no present plans to implement a storage struc-
ture language, though it may incorporate this later.

Another effort is directed toward defining data as it
has been previously stored by a computing system. The
Stored Data Definition and Translation Task Group
(SDDTTG) was formed under the aegis of the CODASYL
Systems Committee to address a current problem ap-
parent from its study of Generalized Data Base Man-
agement Systems (GDBMS): the lack of data transfer-
ability or the incompatibility of data. The purpose of
the SDDTTG is to develop a method for concisely defining
commonly used existing storage structures. Interim re-
ports of its work have been given at the SIGrID~T (Spe-
cial Interest Group in File Description and Translation)
November workshops in 1970 and 1972 [5, 6].

2.4. Other Research
In a recent Ph.D. dissertation at the University of

Pennsylvania [7], Diane Smith developed a DDL oriented
toward defining data as it exists on various secondary
storage media and devices commonly in use. The ap-
proach taken is similar, in certain ways, to the ap-
proach presented here; we briefly summarize this work.

Smith divides the data definition process into several
parts. In one series of language statements, she defines
the conceptual record structure and the conceptual file
structure of the data. These statements also give en-
coding characteristics for the record and file structures.
Another series of statements defines device characteris-
tics and the hierarchic structures which are presented
by the various media. There are also assignments of en-
coded data to media.

In addition, Smith defines a criterion production sys-
tem (cps) which can be used to specify when two con-
ceptual record structures can be considered as being re-
lated. In this way, Smith provides the ability to specify
any relational structure independent of whether it is
ultimately represented via chaining, concatenation, or
other mechanism. The cps can also be used to specify
the set of legal values which a particular data item may
take.

The statements of Smith's languages resemble as-
sembly language macro calls in the sense that a number
of parameters are collected together, by position~ with a
single basic data definition statement. As such, the lan-
guage is difficult to read and to write. On the other hand,
it is a highly flexible language.

3. The Need for Data Definition and General Approach

Until recently, the problem of file translation tended
to be a personal affair; files were much smaller and had
relatively simple data structures. Even in cases where

Communications December 1973
of Volume 16
the ACM Number 12

many users had compiled large volumes of data stored
on secondary devices, these files tended to be disparate
each file was accessed by a small community of users
with relatively few programs. As a result, file conversion
was normally achieved by "dumping" the file onto
formatted card or tape records which could be read into
the new system with relatively little loss in time and
efficiency. Each user saw only his comparatively small
data translation cost, even though the total may have
been a large drain on the data processing funds.

With the advent of large and integrated data bases
using multiple storage media and more complex data
structures but constrained to operate within specified
data management and operating systems, the problem
of conversion became more apparent. The Department
of Defense has found that some system conversions cost
more for data transfer than for rewriting all of the sys-
tem and application programs in a new assembly or
compiler language?

Even in cases where the hardware, data base manage-
ment system, and application programs are expected to
remain essentially constant, the cost of restructuring a
data base (i.e. changing relationships and structures of
the data) is found to be prohibitively high. One pro-
posed solution is to isolate the program (algorithms)
from considerations of the data which it processes.
Such a program is said to be "data independent" [81.
While certain management systems allow parts of the
data structure to change without impacting user pro-
grams, the technology of data independence is not
suMciently advanced to allow extensive restructuring.

With the implementation of new GDBMSS with hier-
archies of storage, the migration of data from higher to
lower speed devices means dynamic management of
storage structures and dynamic mapping of the logical
data structure onto these storage structures. A cen-
tralized explicit description of both the logical and
physical aspects of the data thus becomes a necessity
for these management routines.

Furthermore, with the advent of networks of com-
puters which may have one processor retrieving (or
causing retrieval of) data from a distributed data base,
the processor should request data at a logical level, and
retrieval will then depend on the accessing of self-de-
fining data and storage mapping structures. Once again,
this need implies a method of defining not only the
logical data structure but a more complete data defini-
tion involving also the storage media description and
the mapping of data into a storage structure.

The prime requirement of a data definition and
mapping language is that it will be able to describe ac-
curately a wide variety of files. Although it is necessary,
ultimately, to define a syntax for any language, it is
possible to provide a conceptual framework from which

Although this is a "well known" fact, to the best of the authors'
knowledge, it has not been documented in the public domain.
Several inquiries on our part have elicited no specific reference, but
a hearty concurrence with the sentiments.

any reasonable syntax can be developed. The purpose of
this section is not, therefore, to discuss a specific syntax,
but rather to show the necessary parts and semantics of
such a language. However, a syntactic definition of
such a language has been developed; examples of the
use of this language are presented in Section 4.

3.1. Scope of the Language
The issue of separating data names and logical

structures from physical considerations, such as ad-
dresses and the encoding of values, is of prime impor-
tance. In compilers, this issue is referred to as "binding,"
and in generalized data base management systems, it is
referred to as the separation of "data structure" and
"storage structure."

The trade-offs available fbr binding in programming
languages are well known. The greater the degree of
separation between a datum and its type, physical stor-
age address, etc., the greater the flexibility of the lan-
guage. For example, deferred binding of names to stor-
age addresses allows dynamically growing structures
with easy reclamation of the assigned space when the
structures are no longer needed. Of course, this increased
flexibility has its cost in processing time. Processors of
languages with deferred binding are often interpreters
or, if compiled, require a large run-time support library
to keep track of the current, but changeable bindings.

On the other hand, a more restricted binding of data
structure and storage structure often leads to increased
efficiency. A good systems programmer can achieve
startling improvements in program timing by knowing
the way in which the data are stored; he can take ad-
vantage of this knowledge in providing the best capa-
bilities for both storage and retrieval of data.

The latest tendency in large scale information proc-
essing systems involves the multiple use of common data
files. In such systems, no one user has control over the
structure of a particular file (except by primogeniture).
The role of the data base administrator has recently been
described [9] as defining "the rules which control the
access to the data and determine the manner in which
the data will be stored" and further that he controls the
physical mappings which "refer to access strategies to be
used in manipulating physical data."

There are three tacit assumptions for such func-
tions: (1) that the data base' administrator makes de-
cisions on both logical and mapping structures based on
the total needs of many users; (2) that data independ-
ence allows him to change physical mappings to improve
system overall efficiency without affecting the programs
of those users who call normal system-accessing rou-
tines; and (3) that the system has an interpretive or late
binding characteristic to make these roles possible.

However, if descriptions of the logical data struc-
ture and mapping techniques are available within the
system, there is no reason why the sophisticated user
should not reference them to improve his program speed
and efficiency. Such an action would, however, be de-

752 Communications December 1973
of Volume 16
the ACM Number 12

Fig, 1. Data flow independent and data dependent programs,
Note: If the data base is restructured, rewriting of data dependem
program is ~ecessary; however, it avoids a level of interpretations.

r N0{LPe N{)i::N T J ~ r g ~ A v
I oara Pf¢OONAM5 [MApelN~

\ - 7 EXTERNtq.
DATA

MAPPh~,e' /

OArA ,/
FNrER~A(:E /

/
/

OArA 8AS;E

liberate on his part, with the full consideration that a
change on the part of the data base administrator could
invalidate the program, and hence cause program re-
writes. Obviously, this is another of the space/speed
and development cost trade~offs so common in large
scale systems design.

The difference between such data dependent pro-
grams and possible future systems is illustrated in
Figure 1.

Fundamentally, the issue is one of user convenience
and efticiency. Common data base systems have many
classes of users; efficiency and convenience are defined
differently by the various classes. To some, run-time
efficiency outweighs the risk of possible rewrites. Others
demand data base independence and are willing to pay
the cost of interpretive mechanisms. The point is that if
data base management systems of the future are to offer
a range of bindings between logical and physical struc-
tures, then an explicit statement of logical structure and
physical representation must exist and must be available
to users who are permitted access to it.

The second issue which a data definition language
nmst address is that of data structure class. In tradi-
tional business data processing, one usually finds only
relatively simple file structures. Generally, such files
consist of formatted repetition of information for
different members of a particular file. Thus, a file may
consist of a set of personnel records, one for each of the
employees in the corporation, each record of which con-
tains the same number of characters of information
(such as name, address, date of birth, present salary,
present supervisor, job category). Normally the data
structure, which in such a file is nothing much more than
a format in FORTRAN or a simple structure in the data di-
vision of COBOt, is unknown except to the program or
programs that reference the file, as suggested by the in-
ternal data mapping of Figure !. Generalized data base
management systems have extended the concept of sim-
pie files, and normally allow substantially more com-
plicated data structures than the business data process-
ing systems just described. However, all generalized

753

data base management systems do not allow the same
degree of flexibility. It is possible to define various
classes of data structure with different degrees of com*
plexity, capability, and overhead. The proliferation of
different generalized data base management systems
with varying capabilities and with different degrees of
complexity of their data structure leads the author's to
the conclusion that it is very necessary to define classes
of data structure into which the various implementa-
tions can naturally be classified. Such a classification
provides an explicit definition of differences in the data
structures offered by different generalized data base
management systems.

Third, it is necessary to be able to describe all phases
of data to storage structure transformation. This means
that it must be possible to describe the specific data
structure (within the data structure classes just dis-
cussed), the particular classes of media and secondary
storage devices under consideration, the transformation
of data structure instances into user working areas, and
the method of placing these records into the secondary
storage using the predefined access methods.

3.2. Principal Parts of the Language
There are three principal parts of a data definition

and mapping language. These are
1. A definition of the data structure.
2. A definition of the target or storage space.
3. A definition of the mapping between data structure
and target space.

The data structure section has two functions: the
specification of the class of data structure capable of
being described within the system under consideration,
and tile definition of the specific data structure within
that class (often termed the data structure schema).

The target or storage structure consists of a defini-
tion of the different classes of devices, such as high speed
memory and secondary storage, which form the basis
upon which all data structure instances are mapped.

The mapping language has two functions: to de-
scribe those difl'erent types of mappings which the over-
all system can make between a data structure and a
target space, and also to provide a means for linking a
particular data structure to its specific mapping policy.

As an example, if we were describing a COBOL file,
tile records of which are to be stored in indexed-sequen-
tial fashion on a disk drive, then tile total description
would be as follows:
1. Data structure class. Define the class of data struc-
ture available within the COBOL language.
2. Data structure schema. Define the data structure
schema by naming elementary items, giving their size,
and grouping them into levels, etc.
3. Mapping the data structure instances.

a. Define both tile user working area which is used
by the specific implementation of COBOL on the specific
machine, as well as tile general format of the disk
physical record. It might be necessary at this time to dis-

Communications December 1973
of Volume 16
the ACM Number t2

cuss control items stored with the disk record (track and
head addresses, record number, etc.).

b. Define the method by which an instance of the
COBOL record is assembled into a user working area.
This may be extremely simple for this example, but in
general, it will require quite complicated statements,
e.g. when complex linkages to overflows must be de-
scribed.

c. Define the format of the auxiliary data used in the
indexed sequential access method for the implemented
system. This will involve an explanation of the index
tables, as well as the relations between the items in it
and those in the physical record.

d. Define the mapping between the COBOL specific
definition and the user working area, followed by the
mapping between the user working area and the indexed
sequential file.

It will be seen that there are certain portions of this
description which are purely system dependent, and
other parts which are specific to a given file. It is possible,
therefore, to consider different levels of detail for a data
definition and mapping language. One of these levels
could be used to show details such as those in the ex-
ample above, it would be expected to give a total defini-
tion of the system, even though the system does not
change from one implementation to another. A second
level of detail would assume certain concepts to have
been predefined, for example, as macro definitions,
giving the entire working of the operating system.
Naturally, this would assume that a macro statement
like ISAM would convey the total target space and
mapping mechanism between a buffer and the secondary
storage device. Such a "definition library" would mean
that, in many cases, a definer could specify his data
structure by merely giving the COROL definition.

3.3. Summarized Goals of a Total Data Definition
Language

This section has introduced some reasons for de-
veloping a total data definition language, and used these
reasons to set goals for such a language. Basically, such
a language is intended to allow description of the logical
and physical structuring of a wide variety of stored
data. In order to do this, it must meet the following
goals.
1. The language must carefully delimit both the logical
structure and the physical structure and mapping parts
to allow modularity of the language, division of re-
sponsibility of the users for various parts of the defini-
tion, and ease of implementation of generators or in-
terpreters of the language.
2. It must allow for definition of the richest of data
structure classes, but still be able to fractionate the use
of simpler classes of data structures. Naturally, this re-
quires that the language provides a means for specifying
the class of data structure of the defined system.
3. As much of the language as possible should be non-
procedural since a declarative structure is generally

"/54

Fig. 2. Taxonomy of data structure classes in GDBMSs,

OATA 8~rsg SCHE~

/
/

/

more understandable for complex file definition.
4. The data base adminis t ra tor should be able to make
macro definitions in the language for general use in de-
fining new files or extending old ones.

4. Elements of a Data Definition and Mapping Language

This section will present examples using a data
definition and mapping language which has been de-
fined to satisfy the design goals presented in Section 3.
The discussion here is intended to highlight particular
needs and, hence, features of the language. The ex-
amples chosen have been simplified in order to present
a lucid description of particular language features. The
definition of real files is, o f course, considerably more
complex.

O n e of the design goals just presented is to allow
definition of rich data structure classes. The language
presented here deals prima rity with generalized data base
management systems. Though it is the authors' conten-
tion that these present as rich a set of data structure
classes as is needed to prove the effectiveness of the
sample language, it may be necessary to add new con-
cepts for more dynamic data structures such as may be
found in artificial intelligence applications.

The CODASYL Systems Committee in its May 1971
Feature Analysis of Generalized Data Base Management
Systems [10] presents a taxonomy of data structures.
This t axonomy is used in the language since it repre-
sents a systematic, consistent characterization of data
structure classes across a reasonable variety of systems.
As such, it provides some assurance that the language
defined here will be general in scope. In addition, use of
this t axonomy allows definition of data structure classes
at a reasonably "high level" using the keywords of the

language.

4.1. Review of the C O D A S Y L Data Structure Taxonomy
A full explanation of data structure concepts as they

appear in GDBMSS is given in [10] and cannot be at-
tempted here. A brief summary of salient data structure
characteristics is presented for completeness.

Communications December 1973
of Volume 16
the ACM Number 12

Fig. 3. Major sections of the language.
DarA SZRUCrURE;

CLASS-SPECIFICATIONS:

SPECIFIC;

TARGET SPACE;

HAPPING;

GLOBAL-ATTRIBUTES

ITEM_SECTION;

GROUP_SECTION{

GROUP_RELATION_SECTION;

ENTRYSECTION ;

FILESECTION;

END;

lated to one another, but neither is hwluded within the
other, as may be the case with the grouping operation.

The basic concept of the entry level data structure is
that the group or set of related groups corresponds to an
outside world entity which is being modeled. Thus,
entry is the term corresponding to the more common
term "record"; this word was not used since it may be
confused with storage structure concepts and method-
ologies. Difl'erent systems allow different degrees of
complexity in their entry structures. To some systems,
the entry is defined by the outermost level of grouping--
the group entry. To others, distinct groups can be re-
lated so long as the relation is a tree, singly rooted with
no interlevel connections--the TREE ENTRY. Still others
allow more complex relations between groups in an
ent ry- - the plex entry.

The file level data structure is defined to be a set of
entry schemas (record types). If group relations exist be-
tween different entries within a file, the file is called
linked, or else it is unlinked. Similarly, a data base
schema is a set of file schemas, possibly linked together.

It should be clear that, for example, group entries
related through linked files may be equivalent to, for
instance, plex entries in unlinked files. Both involve the
grouping operation followed by a single set of group re-
lations. Thus, the taxonomy reflects the systems as they
exist, rather than some logically minimal structure.

The taxonomy can be summarized as shown in Fig-
ure 2. The report recognizes six generic levels of data
structure in GDBMSS: items, groups, group relations, en-
tries, files, and data bases. Using the data definition lan-
guage of a particular system, a user will dechlre a data
base schema- a "schematic" definition of the data base
structure which is independent of data instances. A
data base schema is declared by giving the item, group,
group relation, entry, and file schemas which are its
components.

The item (elementary item, data element, atom) is the
lowest generic level of data structure. Most GDBMSS offer
a variety of item types (e.g. name, address, salary) and
each item schema (e.g. numeric, character, date) carries
one of the available types. For a given GDBMS, the set of
item types is a fixed, finite set often characterized by the
fact that no operators exist which will select components
of an item?

The grouping operation associates a name, a group
type, and sometimes other attributes with a previously
defined set of items and groups. The items which are im-
mediate constituents of a given group, i.e. not constitu-
ents of any other group which is a member of the given
group, are called principal items. I f all components of a
group are principal items, the group is called simple;
otherwise, it is compound.

A group relation is a set of ordered pairs of group
schemas. This mechanism is used when groups are re-

4 The RCA UL/I system as described in [10] is an exception to
this. It may be treated as a predefined group type.

755

4.2. Structure of the Language
In order to clearly separate the issue of logical struc-

ture from physical realization, and thus meet a design
goal of Section 3, the language is divided into three ma-
jor sections---DATA_STRUCTURE, TARGET_SPACE, and
MAPPING with DATA_STRUCTURE and MAPPING having
further subdivisions as illustrated in Figure 3. In the
DATA_STRUCTURE section, the declarer will state the
salient characteristics of the logical structure he wishes
to view. This is accomplished in two steps. First, the
declarer characterizes the data structure class in which
the particular data structure schema is included. This is
necessary in order to take account of the fact that the
data structure class will vary from one system to
another. Having characterized the data structure class,
the declarer will specit3,, in the SPECIFIC subdivision, the
particular data structure schema which is a member of
that class and to which data instances conform. This
specification involves a capability to state names, nest-
ings, group relations, sort keys, etc. Thus the SPECIFIC
subdivision resembles most closely what is usually called
the data definition language of any given system.

The TARGET_SPACE section of the language serves to
define the space of structures in which data structure
instances will be represented. Clearly, there exists in
computer systems today a tremendous variety of such
structures, ranging from the structure of a "naked ma-
chine" to the structures offered by any processor on that
machine (e.g. an ALGOL machine). Thus, to be com-
pletely general, the statements in the TARGET_SPACE

Communications December 1973
of Volume 16
the ACM Number 12

section must be capable of defining any space of struc-
tures for any universal processing system. This is pres-
ently too ambitious a goal, however, and the class of
target spaces to be defined must be restricted. One candi-
date which would serve well, from a practical point of
view, would be the space of structures that can be de-
fined using cards, tapes, disks, etc. Efforts are under way
to include capabilities for defining such a class of struc-
tures [6]. At present, however, the level of capability in
the storage structure definition is limited to the structure
of a "virtual memory machine." That is, the definable
storage structures are unbounded finite strings of basis
elements (either bit, byte, or word) such that each basis
element is uniquely identified by a nonnegative integer.

The MAPPING section of the language relates the data
structures defined in the DATA-STRUCTURE section to the
structures defined in the TARGET_SPACE section. The
statements which define this process are broken down
by data structure level--item, group, group relation,
etc. Several interesting features appear in the mapping
process. For example, it is frequently the case that the
structure represented in the target space involves data
that were never declared in the SPECIFIC subdivision.
Tape labels and date stamps are typical examples of
non-user-declared data. At other times, the target space
requirements may be such that it is convenient to create
intermediate structures to simplify the specification of
the mapping process. In both these cases it is necessary
to create variables and structures which are local to the
mapping. The facilities provided by the mapping lan-
guage for creating these structures are exactly those of
the DATA__STRUCTURE section; thus a block structured,
recursively processed language results.

The procedural issue has also influenced the design
of the language. As discussed in Sections 1 and 3, the
implicit definition of storage structures via procedures
has been a major reason for the lack of flexibility in
translation between various data and storage structures.
Thus it would appear that the data definition and
mapping language should be as declarative and nonpro-
cedural as possible. Existing systems show that this is
possible when dealing with logical structures, and is
usually possible in describing the mapping to physical
structures. However, the ability to escape to procedures
seems mandatory within the MAPPING section. The fol-
lowing examples indicate why this is the case. In storing
an entry instance, certain GDBMSS will use list structuring
techniques if the size of the entry exceeds certain target
space parameters, such as the size of a disk track, but
use sequential techniques for smaller entries. Another
example is found in entries which are stored using hash-
ing techniques with some method for solving the multi-
ple-hit problem. Cases such as this seem to demand a
procedura[language in their definition. Thus, at various
points, statements in the MAPPING section refer to map-
ping procedures. These procedures would presumably
be written in a conventional procedure-oriented lan-
guage. However, we hasten to point out that, while

756

necessary in the general case, the use of procedures is not
necessary to describe files as they exist in many ge~er-
alized d a t a base management systems.

4.3. Selected Examples of Language Statements
This sect ion will present sample language state-

ments f r o m each of the three sections in order to illus-
trate fu r ther relevant concepts of data definition lan
guages, as they have been discussed in Sectiol~ 3. The
sample s ta tements witl be illustrated by declaring the
structure and mapping of a simple file.

Recall f r o m Section 3 that the DATA_STRUCTURE sec-
tion accomplishes two tasks---the declaration of a data
structure class from which the data structure schema will
be drawn, an d the definition of the data structure schema
itself. In this way, the wide class of structures available
in the full language can be specialized to a class of struc-
tures pa r t i cu l a r to a given GDBMS.

The dec lara t ion of data structure class is given in the
CLASS_SPECIFICATIONS section. Statements in this section
fall into th ree categories. The first allows definition of
the item, g roup , entry, and file types available to a de-
finer of a da t a structure schema. The second allows
declarat ion o f attributes which will be carried with each
type in a schema declaration. The third allows declara-
tion of s t ruc ture checks which the data base schema
must satisfy. All of these statements are necessary: the
first, because different systems allow different item,
group, etc. , structures; the second, because attributes
of items, group, etc., vary; the third, because of" the
finite restr ic t ions of various sorts imposed by the various
systems. T h e sutticiency of statements in CLASS....SPECI-
FICATIONS can be measured against the systems in the
CODASYL Systems Committee's Feature Analysis (~ Gen-.
eralized Data Base Management Systems [I0]. At pres-
ent, a series o f statements exist which seem sufficient for
the systems analyzed there. As the class of structures in
GDBMSS evolves, so statements in CLASS_SPECIFICATIONS

will also evotve.
The s ta tements within CLASS.._SPECIFICATIONS are

illustrated by the following example. Consider a data
structure class with items of type integer, real, and char-
acter str ing, where each character string item schema
must ca r ry a length specification. There may be at most
256 item schema definitions in a data base schema. Items
can be g r o u p e d arbitrarily so long as the nesting depth is
less t han 16. Statements to define this data structure
class are s h o w n in Figure 4.

The DEFINE statement declares item and group types
which will be allowed in a schema declaration. The
GROUP e n t r y and LINKED file portions of the DEFINE
statement are fixed keywords of the language which re-
strict the d a t a structure classes to be GROUP entries
only, w i th LINKED file structures permitted. Then, a
s ta tement declares that item schemas of type CHAR must
have a LENGTH attribute given as an integer (or list of in-
tegers). T h e N ESTING-MAX= 16 statement declares that a
check be m a d e for depth of nesting of items and groups

Communications December 1973
of Volume 16
the ACM Number 12

Fig. 4. Data structure class specifications.
CLASS_SPECIFICATiONS;

DEFINE (INTEGER, REAL, CHAR) ITEM,

(SIMPLE, COMPOUND) GROUP

(GROUP) ENTRY,

(LINKED) FILE;

ITEM_TYPE CHAR, ATTRIBUTE = LENGTH (INT_LIST);

NESTING MAX = 18

ITEM MAX : 256

Fig. 5. Sample data structure schema definition.

SPECIFIC;

FILE SAMPLE, TYPE = LINKED

ENTRY RECONE, TYPE = GROUP

GROUP PERSON, TYPE = COMPOUND;

ITEM ID_NO, TYPE = INTEGER

ITEM NAME, TYPE = CHAR, LENGTH = 20;

ITEM AGE, TYPE = INTEGER;

GROUP BIRT}i, TYPE = SIMPLE;

ITEM DAY~ TYPE = INTEGER;

ITEM MONTH, TYPE = INTEGER;

ITEM YEAR, TYPE = INTEGER;

END BIRTH;

END PERSON;

END REC_ONE;

ENTRY REC_TW0, TYPE = GROUP:

GROUP JOB, TYPE = SIMPLE;

ITEM JOBCODE, TYPE = INTEGER;

ITEM SALARY, TYPE = REAL;

END JOB;

END RECTWO;

RELATIONSHIP WORKS AT IS (PERSON, JOB);

END SAMPLE;

Fig. 6. A target space definition.
TARGET_SPACE;

BASIS = BYTE;

CLASS POINTER, LENGTH = 4

START = MODULO 4 BYTES

CLASS TWOSCOMP_INT, LENGTH = 2

START = MODULO 2 BYTES;

CLASS FLOATING, LENGTH = 4,

START = MODULO 4 BYTES;

within groups. The maximum nesting depth allowed is
16. Similarly, ITEM_MAX= 256 declares that the total
number of item schemas declared should not be greater
than 256. In general, there will be a number of these
structural checks that will apply for a given GDBMS.

Figure 5 presents a sample schema definition which
conforms to the data structure class of Figure 4. Two
group entries --PERSON and JOB --are defined with items
of various types included. The item of type character
string has a LENGTH attribute specification, as required.

757

A relationship named WORKS_AT is then declared to exist
between entry instances of PERSON and JOB. Thus, the
statements of the SPECIFIC section look most like the
usual data definition language statements, with the ex-
ception that the particular attribute keywords will both
vary depending on what was declared in the CLASS_SPECI-
FICATIONS.

Although not shown in Figure 5, the language also
contains facilities for the definition of tree entries and
plex entries and for the definition of group structures
which are arbitrary constructs of lower level nesting and
repetition operators. Certain predefined attributes are
also included to allow for multiple group instances oc-
curring within a group (the so-called repeating group)
and to allow certain items to have derived values (e.g.
the "count item" often associated with repeating
groups).

The statements of the TARGET_SPACE section are quite
straightforward, reflecting the fact that the class of tar-
get spaces-f in i te strings -is not difficult to describe.
Figure 6 illustrates a target space definition. The ele-
ments from which the strings are built are declared in
the BASIS statement. Strings of BITS, BYTES, or WORDS are
possible, where each is a primitive concept in the lan-
guage. Each primitive in the string is assumed to be ad-
dressable. In addition, one level of structure can be de-
clared by giving each construct a name, a length, and
possibly restrictions on where in the target space the
construct may begin. Thus in Figure 6, TWOS__COMP_INT
and FLOATING are defined. In addition, two predefined
functions exist over the target space: SEQUENTIAL (//,
target space constructs) and LIST (n, target space con-
structs). The first defines a string of n target space con-
structs where each construct also includes the prede-
fined target space element POINTER, such that a one way
list of the target space constructs is established.

Finally, MAPPING relates structures in the DATA_
STRUCTURE section to those in the TARGET_SPACE. Sam-
ple mapping statements are written as shown in Figure
7. The GLOBAL_ATTRIBUTES section defines certain poli-
cies concerning padding, justification and the represen-
tation of null values. The other sections of the language
are then built up from the item level to define how each
construct of the defined structure is to be represented.
Thus in the ITEM_SECTION, the correspondence is made
between data structure items and their representation
in the target space.

The representation of groups can then be considered
a collection of representations of the constituent items.
Following Olle [11] the keywords of mapping at the
group level reflect the fact that group mappings in
GDBMSS are either concatenations of the constituent
items (shown in Figure 7), or else constituents identified
by position, label, or by an indirect addressing mecha-
nism. Thus, the language contains facilities for each of
these mappings at the group level. The group level
mapping statements also illustrate that mapping policies
can be declared by data structure type or data structure

Communications December 1973
of Volume 16
the ACM Number 12

name, with specification by name overriding specifica-
tion by type.

Group relations are usually represented by pointer
mechanisms. Thus, the language has facilities for speci-
fying a wide variety of chaining techniques, one of which
is shown in Figure 7. Note that there are two phases to
defining the representation of a group relation when
pointer techniques are used. First, it is necessary to
specify which of a possible family of pointers is to be
used for a particular element in a group relation in-
stance. For example, certain systems [12] have pointers
which carry encoded information telling whether a
pointer points to a header element or a preceding mem-
ber element. Other systems distinguish between a pointer
used in the header element and one used in the member
element. Once a particular pointer has been chosen, the
chaining policy (e.g. one-way or two-way lists) must be
specified. Of course, group relations may not be repre-
sented by pointers at all, but rather by matching values
of particular data items in the groups, for example. The
language has facilities for specifying a variety of such
representations.

Entry representation is similar in spirit to group
representation. In Figure 7, we have complicated the
example by including a created structure---a deletion
marker--which will be carried by every entry instance.
The means for declaring these auxiliary structures is
through recursion. Each section of MAPPING may con-
tain a recursion back to the OATA_STRUCTUI~e section in
order to declare and map those auxiliary structures
needed in the realization of the user's data structure. The
facility for recursion is typically used to create deletion
bytes and other structures which are usually transparent
to a user program.

Finally in the FILE_SECTION, our sample file is de-
fined to be partitioned by entry type and ordered by a
certain field within each entry. The two partitions are
then to be concatenated; thus the file is considered to
be sequential in the target space. The FILE_SECTION
also has facilities for partitioning files into fixed-length
segments (for possible assignment to fixed-length or
blocked media) and for the definition of indices which
are to be constructed. An index is considered to be a
file of derived values. The strategy is to declare the index
as an auxiliary structure and define how the index itself
is to be represented. An example is given in [13].

Although the sample definition may seem long, we
reiterate that not all parts of the definition would be
written by a single person for each data base schema.
Rather, the CLASS_SPECIFICATIONS section would be
written once for a given GDBMS. The MAPPING section,
to the extent that mappings are specified by data type
and not by data name, can also remain constant across
all the files in a given system. TARGm'_SPACE definitions,
even as they become more complex, tend to remain fixed
for a given device or file on a device. Thus the only sec-
tion that is highly dependent on a given data base
schema is the SPECIFIC section in which the schema is de-

Fig. 7. Sample mapping statements.
MAPPING;

GLOBAL_ATTRIBUTES;

PAD CHAR : '40'X;

LEFT_JUSTIFIED;

NULL CHAR = '00'X

NULL POINTER : '000O00OO'×

ITEM_SECTION;

TYPE INTEGER, REPRESENTATION : TWOS_COMP_INT;

TYPE REAL, REPRESENTATION : FLOATIIIG;

TYPE CHAR, REPRESENTATION : SEQUENTIAL (LENGTH~BYTE);

GROUP__SECTON;

TYPE COMPOUND, REPRESENTATION : ORDERED (CONSTITUENTS);

GROUP JOB, REPRESENTATION : ORDERED (SALARY, JOB__CODE);

GROUP RELATIONSECTION;

PARENT OF WORKS, REPRESENTATION = POINTER;

DEPENDENT OF WORKS, REPRESENTATION : POINTER;

RELATION WORKS, REPRESENTATION = CHAIN;

ENTRY_SECTION;

DATA_STRUCTURE;

CLASSSPECIFICATIONS;

DEFINE(CHAR) ITEM

SPECIFIC;

ITEM DELETEMARK TYPE : CHAR, LENGTH : i;

MAPPING;

ITEM_SECTION;

ITEM DELETEMARK, REPRESENTATION = BYTE;

END;

ENTRY PERSON, REPRESENTATION = ORDERED (DELETE MARK

PARENT RELATIONS~

CONSTITUENTS);

ENTRY JOB, REPRESENTATION : ORDERED (DELETE MARK,

DEPENDENT REiATIONS~

CONSTITUENTS);

FILE SECTION:

ORDER PERSONORDER IS ASCENDING BY VALUE OF NAME;

ORDER JOBORDER IS ASCENDING BY VALUE OF JOB CODE

PARTITION REC ONE PARTITION IS UNBOUNDED ENTRIES

OF TYPE REC_ONE;

PARTITION REC_TWO_PARTITION IS UNBOUNDED ENTRIES OF

TYPE REC_TWO;

PARTITION FILE SAMPLE BY ENTRY TYPE

ORDER PARTITION REC ONE PARTITION USING PERSONORDER;

ORDER PARTITION REC TWG PARTITION USING JOB_CODE;

FILE SAMPLE, REPRESENTATION :

ORDERED (REC ONE_PARTITION,

REC TWO PARTITION);

END;

758 Communications December 1973
of Volume 16
the ACM Number 12

clared. We therefore anticipate that a definition library
facility incorporated into a data definition language
processor will greatly alleviate the labor involved in pro-
ducing a complete logical and physical data definition.

5. Conclusions

This paper has introduced the concept of a total data
definition language which can describe not only the
logical relationships between items of data but also the
physical mapping of instances of the data onto sec-
ondary storage devices.

There are several reasons why such a language is
needed, and several purposes to which such definition
could be put. These include:
1. The formalization of the description of the storage
structure of modern information processing and gen-
eralized data base management systems can be used for
better communication of methodology. Presently this
description is verbalized in user manuals. The descrip-
tion is usually fractionated throughout the manuals and
sometimes is incomplete. A description in an exact and
formal fashion would aid the systems programmers who
must maintain these large and expensive systems.
2. A formal stored description could be used by the
system itself for many processes which are now difficult
or impossible. Some examples are: the process of re-
organizing the data base (i.e. the collection of useless or
redundant--garbage--space) ; the process of restructur-
ing the data base (i.e. the data base administrator's de-
cision to change either the logical relationships or their
mappings without affecting the users' programs) ; and the
ability of a system to generate its own access mecha-
nisms based on a knowledge of the logical access paths
and their physical realization.
3. A formal description of data could be used by other
systems for intercomputer communication. The use of
computer networks, possibly with distributed data bases,
means that one computer system may need to utilize
data stored in another (possibly "foreign") computer
system. The data may be made available in one of sev-
eral ways from total reading, with translation, of the
foreign base, to generation of query language requests
in the foreign language. However, in all cases there is a
need for an augmented DDL.

The discussion of requirements of such a DDL has
led to the definition of a new set of language capabili-
ties in the following areas.
1. There is need for a DDL to define the specific data
structures for a given instance of the data base. Such a
language exists in all generalized data base management
systems, though the capability differs due to restricted
classes of data structures allowed by different systems.
2. The data structure class specification should be made
in an explicit fashion. This has been achieved by using
the taxonomy of GDBMS; though this is somewhat re-
strictive, it is a good step toward total generality.

3. The effect of storage devices on the class of items
stored and on the mapping functions has been investi-
gated, and a first-round design of a language has been
produced to satisfy the requirements.
4. A mapping language between these somewhat gen-
eralized classes of data structure and storage device has
been defined and used to document several real systems.

Our investigations have also revealed the need for
investigations into several aspects of total data defini-
tion languages. For example, there is probably a need
for a storage accessing and retrieval definition language
to complement the static DDL definitions now given. Such
a language would deal with the descriptions of free
storage management, garbage collection, and migration
of data. As all of these fields develop, the capability will
emerge to exert increased control over the behavior of a
GDBMS. It is this increased control which will make
GDB~aSS truly flexible.

Received March 1972; revised Marcia 1973

References
1. Gosden, J.A. Report to $3 on data definition languages.
SIGFIDET 1, 2 (Dec., 1969).
2. Gosden, J.A. Software compatibility: What was promised,
what we have, what we need. Proc. AFIPS 1968 FJCC Vol. 33,
AFIPS Press, Montvale, N.J., pp. 81-87.
3. ECMA/TCI5/69/15. First preliminary draft report on the
ECMA data description language.
4. CODASYL Data Base Task Group. ACM, New York, April,
1971.
5. SIGFIDET, Proc. of a Workshop on File Description and
Access, Houston, Texas, Nov., 1970.
6. SIGFIDET, Proc. of a Workshop on File Description and
Access, Denver, Nov., 1972.
7. Smith, Diane P. An approach to data description and conver-
sion. Ph.D. diss. The Moore School of Electrical Engineering, U.
of Pennsylvania, Philadelphia, 1971.
8. Codd, E. F. A relational model of data for large, shared data
banks. Comm. ACM 13, 6 (June 1970), 377-387.
9. Joint Guide-Share Data Base Requirements Group. Data base
systems requirements. Nov., 1970.
10. CODASYL Systems Committee. Feature Analysis of Gen-
eralized Data Base Management Systems. ACM, New York, 1971.
11. Olle, T.W. Data structures and storage structures for gen-
eralized file processing. Proc. FILE 68 Internat. Seminar on File
Organization, Copenhagen. 1968, pp. 285-294.
12. Roberts, L.G. Graphical communication and control lan-
guages. Second Cong. on Inform. Syst. Sci., Spartan Books, Bal-
timore, Maryland, 1973.
13. Taylor, R.W. Generalized data base management system
data stuctures and their mapping to physical storage.
Ph.D. diss., U. of Michigan, Ann Arbor, 1971.

759 Communications December 1973
of Volume 16
the ACM Number 12

