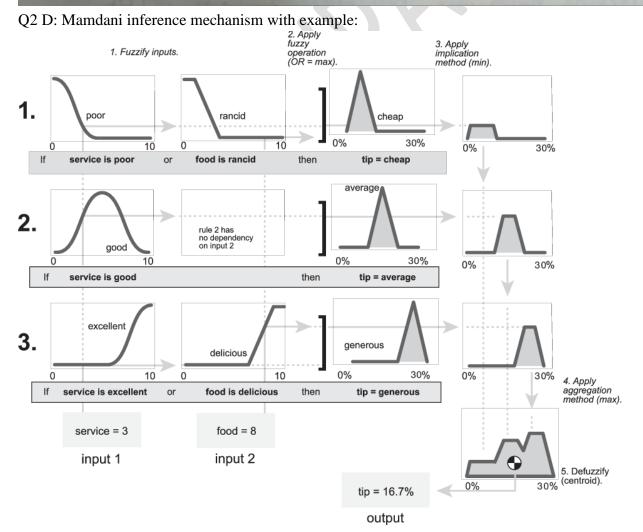

	QP CODE 2272	243			
PILLAICON	PILLAI COLLEGE OF ENGINEERING, NEW PANVEL (Autonomous) (Accredited 'A+' by NAAC) END SEMESTER EXAMINATION May 2023				
SEM-VI	BRANCH: Information Technology	-			
	- Evolutionary Computing and Fuzzy systems. Time: 02.00	- Hours			
Max. Marks: 60 Date: 08/0 N.B 1. Q.1 is compulsory Subject Code IT 3 2. Attempt any two from the remaining three questions Subject Code IT 3 3. Each Question carry 20 marks. Subject Code IT 3					
Q.1.	Attemat All	Marks			
	Attempt All				
a)	What are genetic algorithms? Explain the flow chart of the genetic algorithm.	5 5			
b)	Explain the evolutionary programming in detail.What are fuzzy sets? How fuzzy sets are different from crisp sets.	5			
c)	Consider the following two fuzzy sets: $Fuzzy A = \left\{ \frac{0.2}{1} + \frac{0.3}{2} + \frac{0.4}{3} + \frac{0.5}{4} \right\}$ $Fuzzy B = \left\{ \frac{0.1}{1} + \frac{0.2}{2} + \frac{0.2}{3} + \frac{1}{4} \right\}$ Find the Algebraic sum and bounded difference.				
d)	What is fuzzification? Explain fuzzification with an example.				
Q.2.	Attempt All				
a)	Why there is a need for a selection operator in genetic algorithm. What will happen if we maintain TOO HIGH and TOO LOW selection pressure?				
b)	Perform Max-min and Max-product composition between the following fuzzy relations: $R = \begin{bmatrix} 0.6 & 0.3 \\ 0.2 & 0.9 \end{bmatrix}$ $S = \begin{bmatrix} 1 & 0.5 & 0.3 \\ 0.8 & 0.4 & 0.7 \end{bmatrix}$				
c)	Explain the tournament selection technique with an example. Compare the crossover and mutation operators.				
d)	Explain the Mamdani inference mechanism with an example.				
Q.3.	Attempt All				
a)	Give various stopping criteria for genetic algorithms.	4			
b)	What are fuzzy quantifiers? Explain fuzzy quantifiers with an example.	4			
-,					
		1			

	QP CODE 227243				
c)	Perform defuzzification using the center of gravity (COG) method:				
	$\mu \qquad 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 7 \\ 8 \\ 9 \\ x \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$				
d)	Define the terms crossover probability and mutation probability. Consider the parent chromosomes given below. Apply uniform crossover with mask technique and generate the offspring solutions. Parent1: 0110100101 Parent2: 0100110000 Mask: 1101001010 Apply any mutation on the offspring solution.	6			
Q.4.	Attempt All				
a)	 What are fuzzy controllers? Consider a fuzzy controller for a train approaching the station. Assume the inputs are a distance from the station and the speed of the train. The output is the broken power applied. Perform the following: 1. List descriptors used for input and output variables. 2. For every input and output descriptor draw the appropriate membership function and provide its formula. 3. Formulate a rule base. 				
b)	Explain various representation or encoding techniques used in genetic algorithm. Give one example where permutation representation can be used.	10			

Solution:

QP CODE 227243

Evolutionary programing. > (3 marks) Vector supresentation In halization lop Decision Ucuricubles Survivor set Ne individuals. Offspring Creation Competing pool NP Offspecings Nº parents Competition & Objective function (2 marks) Enfunction 04 Definition of fuzzy sets -> (Imarky) Difference with Orisp -> (Imarky) -> (1.5 myrks) Algebraic Sum= $\mathcal{H}_{n+B}(x) = [\mathcal{H}_{P}(x) + \mathcal{H}_{B}(x)] - [\mathcal{H}_{P}(x) \cdot \mathcal{H}_{B}(x)]$ 2022 DECEMBER a wk M T W T F S S * * * 1 2 3 4 0.28+0.44+0.52+1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 *


QP CODE 227243 1's mary MÃO B(X)= max [0, MÃ(X) - MB(X)] = } 01 + 01 + 02 + 07 -> (Imarky) Fuzzibication Explanation with example -> (3 marks) eq suns made by playor in IPL 20 25 100 80 40 60 Augu High 10 Lose Gusp=25 (1) Utorostaro = 0.4 (1) Utorostaro = 0.4 Mangscore (25) = 0.6 0.6 NOVEMBER 2022 WE M TW TFSS 1 2 3 4 5 6 7 8 9 10 11 12 13 0.4 se 14 15 16 17 18 19 20 41 21 22 23 24 25 26 27 - 20 29 30 · · · · · 202540 0 0 20

QP CODE 227243

021 of Need of Selection operator in C.A. -> (2 marks) Selection pressure -> degree to unich better individuals are pavoured. Selection pressure too High -> G.A will " (onverge pre-maturly and will return Sub-optimal Solution. Selection pressures too Low > G.A will . tuke l'or of time to lonverge. (2 marki Max-min 6 7= 06 0.5 0.3 0.8 0.4 0.7 muz-product (2 marks) 7= 0.6 0.3 0.21 0.72 0.36 0.63 DECEMBER @ MTWTFSS . . . 1 2 3 4 5 6 7 8 9 10 I

QP CODE 227243

Tournament Selection with examp p. ma 21 ation u LOSSOVEN Divergence lovergence obora VUT Sec more 2 3 oer 3 Ca arahon ortanor

QP CODE 227243

3 mari Explain each points. Leach 83 Maximum generations Elapsed time No change in fitness Stall generations. Fuzzy quantifiers - (2 marks) Types of buzzy quantifiers. Explanation with example (2 marks)

8

Table 1						
Sub-area number	Area(A_i)	Centroid of area($\overline{x_l}$)	$A_i \overline{x_i}$			
1	0.5	2.333	1.1665			
2	02	5	10			
3	.05	7.166	0.3583			
4	.15	7.25	1.0875			
5	.15	7.75	1.1625			
6	.15	8.333	1.2499			

The defuzzified value x^* will be

$$\frac{\sum_{i=1}^{N} A_i \times \bar{x_i}}{\sum_{i=1}^{N} A_i}$$

 $=\frac{(1.1665+10+0.3583+1.0875+1.1625+1.2499)}{(0.5+2+.05+.15+.15+.15)}$

= (15.0247)/3 = 5.008

 $x^* = 5.008$

National Day (AE) 065pring1 = 0100110000 gbspring2= 0110100101 Applying interchanging technique on objecting I parent = 0000110000 01 Obspring = 0000110010 Crossova propability and -(2 marks mutation probability of

QP CODE 227243

Sunday DECEMBER 2022 Wk-48, Day 338 - Left 27 04] input= 2 Distance, Speedy - (2 marks) output= 2 bacaks Discriptons 8-Distance = 2 Small (SD), medium (mo), large (LO) 5 Speed = 2 Small (SS), medium (802), lange (LS)} 9 break 2 Smalless (LB), moderate (MB), Mar high (HB). Appropriate membership kunchion for every descriptor with formule S (6 marks) 3 Rule buse -> (2 marks) Oubl Encoding techniques (Tmarks)_ (binary, octal, hexadecimal, permutation, Value, tree encoding) trample of pormutation - (3 marty) 2345678 9 10 0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 1 30 31