

PILLAI COLLEGE OF ENGINEERING, NEW PANVEL (Autonomous) (Accredited 'A+' by NAAC) END SEMESTER EXAMINATION

May 2023

SEM IV	/	BRAN	ICH: ELE	CTRON	ICS AN	D TE	LECOM	MUNIC	CATION	ENGINEER	ING –	
Subjec	ubject: - Engineering Mathematics IV Time: 0/									Time: 02.0	0 Hours	
Max. Marks: 60Date:02N.B 1. Q.1 is compulsorySubject Code2. Attempt any two from the remaining three questions										Date:02/0 ect Code E	5/2022 F 207	
3.	Each Que	stion ca	rry 20 n	narks.								
Q.1.	Attempt	t All							\rightarrow		Marks	
a)	Construct an Orthomormal basis using Gram-Schmidt process to $S = \{(1,1,1), (-1,1,0), (1,2,1)\}$										5	
	Fit a binomial distribution to the following data											
b)	Х	0	1	2	3		4	5	6		5	
5,	f	5	18	28	12		7	6	4			
c)	Calculate data. X Y	e the Ka 100 110	rl Pears 102 100	on's cor 108 104	rrelatio 111 108	n coe	efficient 115 112	from t 116 116	the follo 118 120	owing	5	
d)	Using Rayleigh-Ritz method, solve the boundary value problem $I = \int_0^1 (y'^2 - y^2 - 2xy) dx \text{ given } y(0) = y(1) = 0$										5	
Q.2.	Attempt	t All										
a)	Calculate X Y	e the rar 52 62	nk coeff 63 53	icient o 45 51	f correl 36 25	atior 72 79	n from t 65 43	he follo 45 60	owing d 25 33	ata.	4	
b)	A discrete random variable has the probability density function is given below .											
	Х	-2	-1	L	0		1	2		3	4	
	P(X=x)	0.2	k		0.1		2k	0.	1	2k	╝	
	Find k, mean and Variance.											
c)	Using Ca circle z	suchy res $ =4$	sidue th	eorem	evaluat	te \oint_C	$\frac{2z-1}{(z+1)(z+1)}$	$\frac{1}{(-3)} dz$	where	C is the	6	

d)	Using Green's theorem Evaluate $\int_C x^2 dx + xy dy$ where C is the triangle having vertices A=(0,2), B=(2,0) and C=(4,2).										
Q.3.	Attempt All										
a)	The weights of 1000 students are found to be normally distributed with mean 40 kgs. and standard deviation 4 kgs. Find the expected number of students with weight less than 36 kgs.										
b)	Examine whether the given vectors are linearly independent or dependent, if dependent find the relation between them. [3,1,-4], [2,2,-3], [0,-4,1]										
c)	Using stokes's theorem evaluate $\int_C \bar{F} d\bar{r}$ where $\bar{F} = 4y i + zj + xk$ and C is the boundary of the surface $x^2 + y^2 = 1 - z$										
d)	Evaluate $\int_{C} \frac{z}{(z-1)^2(z-2)} dz$, where C is the circle $ z-2 = 2.5$										
Q.4.	Attempt All										
a)	Find the extremal of $\int_{x_1}^{x_2} \frac{\sqrt{1+y'^2}}{y} dx$										
	Find the lines of regression of Y on X from the following data										
b)	X 65 66 67 67 68 69 70 72 Y 67 68 65 66 72 72 69 71	4									
c)	If $v_1 = (0,1,0)$, $v_2 = \left(\frac{-4}{5}, 0, \frac{3}{5}\right)$, $v_3 = \left(\frac{3}{5}, 0, \frac{4}{5}\right)$, show that the vectors are orthonormal. Express u=(1.1.1) as linear combination of v_1 , v_2 and v_3										
d)	Find the Laurent's series which represent the function $f(z) = \frac{2z-3}{z^2-4z-3}$ when i) $ z - 4 < 1$ ii) $ z - 4 > 3$	6									