	Course Academic Plan	Course Code and Name: CSC 401
	2020-21	Engineering Mathematics -IV

			1
PHCET AMS	Evaluation and	PHCET Library	Value added courses
	Assessment		and MOOC courses
Institute & Department	Former IA question	Former IA question	Value Added Courses
Vision and Mission	papers and	papers	(VAC) are conducted
	solutions (prepared by	solutions - hardcopy	throughout the
	faculty)		semester
			& in the semester break
Lesson Plan, Practical	MU end semester	MU end semester exam	Online courses from
plan, Content delivery	examination	question paper &	NPTEL, Coursera etc.
(Planned and Actual)	question papers and	solutions	are
	solutions	- by faculty, hardcopy	pursued throughout the
	(prepared by faculty)		semester
Student attendance and	Class notes and Digital	All text books,	Video recording of
performance	Content	reference	Lectures
	for the subject	books, e -books	captured in Light board
		mentioned	studio at PHCET is
		in the syllabus & AAP	made available.
Student details	Comprehensive	Technical journals and	Interactive smart board
	question bank, MCQ,	magazines for	facility is available and
	PPT, Class Test papers	reference	lectures are recorded.
Departmental	Academic	PHCET library is	Expert lectures by
Academic plan	Administration Plan &	member of IIT	Industry/Academia
	beyond Syllabus	Bombay Library	
	Activity report		

The academic resources available in PHCET, Rasayani

1. a Course Objectives (As per Blooms Taxonomy)

Sr. No	Course Objectives
	The course is aimed
CS 401.1	Matrix algebra to understand the engineering problems
CS 401.2	Line and Contour integrals and expansion of complex valued function in a power series.
CS 401.3	Z-Transforms and Inverse Z-Transforms with its properties.
CS 401.4	The concepts of probability distributions and sampling theory for small samples.
CS 401.5	Linear and Non-linear programming problems of optimization.

1.b Course Outcome (CO) Mapping with Modules

Sr. No.	COs	Related Module/s
	On successful completion of course student will be able to	
CO 1	Apply the concepts of eigen values and eigen vectors in engineering problems.	1
CO 2	Use the concepts of Complex Integration for evaluating integrals, computing residues & evaluate various contour integrals	2
CO 3	Apply the concept of Z- transformation and its inverse in engineering problems.	3
CO 4	Use the concept of probability distribution and sampling theory to engineering problems.	4
CO 5	Apply the concept of Linear Programming Problems of optimization	5
CO 6	Solve Non-Linear Programming Problems to engineering problems of optimization.	6

1. c Mapping of COs with POs (mark 3: Strong, 2: Moderate, 1: Weak,0)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	1	1	2	1	1	1	2	1	1	1	1	1
CO 2	1	1	1	2	1	2	1	1	2	2	1	2
CO 3	3	2	3	3	1	2	3	1	2	2	2	1
CO 4	1	1	1	2	3	1	1	3	1	1	1	1
CO 5	2	1	2	1	1	1	2	1	3	1	3	1
CO 6	1	1	2	2	3	1	1	1	3	1	1	1

1.d Mapping of COs with PSOs

	PSO1	PSO2	PSO3	PSO4
CO 1	1	1	2	1
CO 2	2	2	3	2
CO 3	2	3	2	2
CO 4	2	2	3	1
CO 5	3	3	2	1
CO 6	2	2	3	2

1.e Core Competency of the course

Categories	Mathematics	Basic Science & General Engineerin g.	Humanities & Soft Skill	Core Engg./ Technology - Design & Analysis	Multidisciplinary
Tick where applicable	\checkmark				

2.a Teaching Scheme (As specified by the University)

Teaching Scheme	(Contact Hours)	Cr	edits Assigned	
Theory	Pract.	Theory	Pract.	Total
3+1@	-	4	-	4

@ 1 hour to be taken as tutorial class wise

2.b Module Wise Teaching Hours and % Weightage in University Question Paper

Module	Module Title and Brief Details	Teaching	% Weightage in
No.		Hrs. for each	University
		module	Question Papers
1	Linear Algebra	06	25
	(Theory of Matrices)		
2	Complex Integration	07	25
3	Z -Transforms	05	25
4	Probability Distributions and	06	20
	Sampling Theory		
5	Linear Programming Problems	06	10
6	Non-Linear Programming	06	15
	Problems		
	Total	36	120

2.c Prerequisite Courses

Sr. No.	Semester	Name of the course	Topics covered
1	III	Engineering Mathematics I,II,III	Complex Variables,

2.d Relevance to Future Courses

Sr. No.	Semester	Name of the course

2.e Industry Application of the course

Sr. No	Application
1.	To apply the concept of eigen values and eigen vectors to solve
	engineering problems.
2.	To apply the concept of Probability distributions to the engineering
	problems.

3.	To apply the concept of complex integration to engineering
	problems.
4.	To apply the concept of Linear and Non-linear Programming
	problem in industry as well as engineering fields for drawing
	conclusion.

3.a Past Results -

	Division A & B		
AY Year	Initials of Teacher	% Result	
Dec 2019-20	AK	95%	

Topics which affect results negatively	Module Number	Recommendations to overcome these issues & improve result in future
Module 3	Fourier Series	To cover more as a part of this module

4.a Learning Resources – Books and E-Resources

4.b List of Text Books

Book Code	Title	Authors	Publication
B1	Higher Engineering Mathematics	Grewal B. S.	Khanna Publication 2005 38th edition
B2	Advanced Engineering Mathematics	Kreyszig E	9th edition, John Wiley.
B3	A Text Book of Applied Mathematics Vol. I & II	P. N. Wartikar and J.N. Wartikar	Vidyarthi Griha Prakashan, Pune

4.c List of Reference Books

Sr.	Reference book titles	Authors	Publisher	Edition	Module
No.					No
1	Advanced Engineering	R. K. Jain and S. R.	Narosa	Revised	1, 2
	Mathematics	K. Iyengar,			
	Operations Research: An	Hamdy A Taha	Pearson.	Revised	5&6
2	Introduction,,	-			
3	Complex Variables and	Brown and	McGraw-Hill	Revised	2
	Applications	Churchill	education		
4	Probability, Statistics and	T. Veerarajan	McGraw-Hill	Revised	4
	Random Processes	-	education		
5	Engineering	S. S. Rao	Wiley-Blackwell.	Revised	5&6
	Optimization: Theory and				
	Practice				

4.d List of E – Books

Sr. No.	E book titles	Authors	Publisher	Edition	Module No

4.eWeb Links and Names	of Magazines,	Journals, E-journals
------------------------	---------------	----------------------

Sr.	Web-Links and Names of Journals and	Web-Links and	Module
No.	E-Journals Recommended	Names of	Nos.
		Magazines	
		Recommended	

5. Concept Inventory

Sr. No.	Chapter	Concepts	Text Book	Start Page	End Page	No. of Pages	App. Effort in Hrs	App. Marks
	Linear Algebra	1.1 Introduction & basic concepts of eigen values of characteristic matrix	B1	1.02	1.08	6	1	
1	(Theory of	1.2 Properties of eigenvalues & eigenvectors	B1	1.16	1.22	7	1	10
I	Matrices)	1.3 Cayley –Hamilton theorem : Problems- Verification & evaluation.	B1	1.22	1.51	28	2	18
		1.4 Similarity of matrices	B1	1.55	1.64	56	1	
		1.5 Diagonalisable matrices -Problems	B1	1.89	1.100	31	2	
	Complex	2.1 Line Integrals –Basic concepts and Problems	B1	1.101	1.105	5	2	
2	Integration	2.2 Cauchy's Integral theorem for simple connected and multiply connected regions and Cauchy's Integral formula –Problems based on them.	B1	2.02	2.44	44	2	
		2.3 Taylor's and Laurent's series - Problems	B1	3.01	3.39	40	1	21
		2.4 Definition of Singularity, Zeroes, poles of $f(z)$, Residues, Cauchy's Residue Theorem & Problems.	B1	4.01	4.12	13	1	
	Z - Transforms	3.1 Definition and Region of Convergence, Transform of Standard Functions: $\{k^n a^k\}, \{a^{ k }\}, \{k^{+n} C. a^k\}, \{c^k \sin(\alpha k + \beta)\}, \{c^k \sinh \alpha k\}, \{c^k \cosh \alpha k\}.$	B1	4.16	4.41	25	2	
3		3.2 Properties of Z Transform: Change of Scale, Shifting Property - Problems	B1	4.43	4.63	21	2	21
		3.3 Multiplication, and Division by k, Convolution theorem with Problems	B1	5.10	5.18	18	1	
		3.4 Inverse Z transform: Partial Fraction Method, Convolution Method : Problems	B1	5.19	5.42	24	2	
4	Probability	4.1 Probability Distribution: Poisson and Normal distribution : Problems	B1	6.01	6.52	51	4	
	Distributions and Sampling Theory	4.2. Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-Two tailed test.	B1	7.01	8.60	91	3	21

		4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table	B1	9.01	9.12	12	3	
5	Linear Programming Problems	5.1 Types of solutions, Standard and Canonical of LPP, Basic and Feasible solutions, slack variables, surplus variables, Simplex method.	B1	10.20	10.41	22	3	21
	Tioblems	5.2 Artificial variables, Big-M method (Method of penalty) : Problems ; Duality, Dual of LPP and Dual Simplex Method.	B1	11.02	11.30	26	3	
6.	Non-Linear Programming Problems	 6.1 NLPP with one equality constraint (two or three variables) using the method of Lagrange's multipliers 6.2 NLPP with two equality constraints 6.3 NLPP with inequality constraint: Kuhn-Tucker conditions 	B1					18
Author: Dr. Avinash J. Kamble		То	otal Effo	rt in Ho	urs	36	120	

6.0 Web Links for Online Notes/YouTube/ Digital Content/Lecture Capture/NPTEL Videos

		1 - 0 - 0 - 0
Sr.	Websites/ Links	Module
No		No
1		
2		

7. Recommended MOOC Courses like Coursera / NPTEL / Swayam/ edX etc.

Sr.	MOOC course link	Resource	Course	Certificate
No.		Person	duration	(Y/N)
1			3 Months	Y
2			3 Months	Y

8. Study Material Distributed among Students

GA	Notes (Hand Written)	Digital content	PPT	MCQ	Other
	\checkmark			Yes	

9. Lesson Plan

Lecture No	Module No.	Topics planned	Mapping with CO	Planned Date	Actual Date
		Linear Algebra (Theory of Matrices)			
1	1	Introduction : Eigen values of a matrix	1		
2		Properties of Eigenvalues	1		
3	01	Eigen vectors _Problems based on them	1		
4	•1	Cayley-Hamilton Theorem	1		
5		Similarity of matrices	1		
6		Diagonalizable and non-diagonalizable matrices.	1		
		Complex Integration			
7		Basic concept : Line Integral	2		
8		Cauchy's Integral Theorem	2		
9	02	Cauchy's Integral Formula	2		
10		Taylor's & Laurent's series	2		
11		Singularity, Zeroes, poles of $f(z)$ and residues	2		
12		Cauchy's Residue Theorem	2		
10		Z - Transforms			
13		Basic concept, Definition and Region of	3		
14		Transforms of some standard functions	3		
15	03	Property: Change of scale & Shifting property	3		
16		Property: Multiplication & Division	3		
17		Convolution theorem & Inverse transforms	3		
18		Partial fraction method & convolution method	3		
		Prob. Distribution & Sampling theory			
19		Poisson Distribution	4		
20	04	Normal Distribution	4		
21		Sampling Theory : Basic concepts	4		
22		Testing of hypothesis, t-distributions	4		
23		Small samples : Problems	4		
24		Chi-Square test	4		
		Linear Programming Problem			
25	05	Types of solutions, Standard and Canonical of LPP	5		
26		Basic and Feasible solutions, slack variables, surplus variables, Simplex method	5		
27		Problems : Simplex Method	5		
28		Artificial variables, Big-M method	5		
29		Problems : Big –M method	5		
30		Duality, Dual of LPP and Dual Simplex Method	5		

		Non-Linear Programming Problem		
31		NLPP with one equality constraint with two	6	
	06	variables using the method of Lagrange's		
		multipliers		
32		NLPP with one equality constraint with three variables using the method of Lagrange's multipliers.	6	
33		NLPP with two equality constraints	6	
34		Problems :Two equality constraints	6	
35		NLPP with inequality constraint: Kuhn-	6	
		Tucker conditions		
36	1	Problems: Kuhn-Tucker conditions	6	

10. Rubric for Grading and Marking of Term Work

Lecture + Practical (% Attendance) & Marks	Assignments	Tutorial	Lab / Practical Performance	Lab Journal Assessment	Mooc Course	Total
NA	Mini Project	Batch wise tutorials	NA	NA	NA	

11. Assignment Plan

Assignme	Module	assignment	Mapping with Cos
nt No.	no.		
1	1	Problems to find eigenvalues & eigenvectors of a matrix	1
2	2	Problems to find line integrals, evaluation of residues.	2
3	3	Problems on Z-transforms based on properties	3
4	4	Problems on Prob. distributions and t-distributions.	4
5	5	Problems on LPP by simplex & Big M method	5
6	6	Problems on NLPP by Kuhn-Tuker conditions.	6

12. Beyond Syllabus Activities for Gap Mitigation

No	Type of the	Activities	Details – no of
	Activity		attendees, guest,
			feedback, mark sheet,
			report
1.	Awareness about applications	Mathematical	
	of Mathematics	modelling	
2.			

Academic Plan prepared by

Name of Faculty: Dr. Avinash J. Kamble

Domain Co-ordinator

SIG Coordinator

HOD