

b)	The follower moves with simple harmonic motion during ascent while it moves with uniformly accelerated motion during descent with the following details: Least radius of cam $=50 \mathrm{~mm}$; Angle of ascent $=48^{\circ}$; Angle of dwell between ascent and descent $=42^{\circ}$; Angle of descent $=60^{\circ}$; Lift of follower $=40 \mathrm{~mm}$; Diameter of roller $=30$ mm ; Distance between the line of action of follower and the axis of cam $=20 \mathrm{~mm}$. If the cam rotates at 360 r.p.m. anticlockwise, find the maximum velocity and acceleration of the follower during ascent and descent.	6
c)	Explain the terms: (i) Module, (ii) Pressure angle, and (iii) Addendum.	4
Q.3.	Attempt All	
a)	An open belt drive connects two pulleys 1.2 m and 0.5 m diameter, on parallel shafts 4 m apart. The mass of the belt is 0.9 kg per metre length and the maximum tension is not to exceed 2000 N . The coefficient of friction is 0.3 . The 1.2 m pulley, which is the driver, runs at 200 r.p.m. Due to belt slip on one of the pulleys, the velocity of the driven shaft is only 450 r.p.m. Calculate the torque on each of the two shafts, the power transmitted, and power lost in friction. What is the efficiency of the drive?	10
b)	Locate all the instantaneous centers of the slider crank mechanism as shown in Fig. 2. The lengths of crank $O B$ and connecting rod $A B$ are 100 mm and 400 mm respectively. If the crank rotates clockwise with an angular velocity of $10 \mathrm{rad} / \mathrm{s}$, find: Velocity of the slider A. Fig. 2	6
c)	Enlist and explain any one approximate straight line motion mechanism in brief.	4
Q.4.	Attempt All	
a)	A pair of gears, having 40 and 20 teeth respectively, are rotating in mesh, the speed of the smaller being 2000 r.p.m. Determine the velocity of sliding between the gear teeth faces at the point of engagement, at the pitch point, and at the point of disengagement if the smaller gear is the driver. Assume that the gear teeth are 20° involute form, addendum length is 5 mm and the module is 5 mm . Also find the angle through which the wheel turns while any pairs of teeth are in contact.	10
b)	Power is transmitted using a V-belt drive. The included angle of V-groove is 30°. The belt is 20 mm deep and maximum width is 20 mm . If the mass of the belt is 0.35 kg per metre length and maximum allowable stress is 1.4 MPa , determine the maximum power transmitted when the angle of lap is $140^{\circ} . \mu=0.15$.	6
c)	Draw the displacement diagram for a cam to raise a valve with simple harmonic motion through 50 mm in $1 / 3$ of a revolution, keep if fully raised through $1 / 12$ revolution and to lower it with harmonic motion in $1 / 6$ revolution. The valve remains closed during the rest of the revolution. The axis of the valve rod passes through the axis of the camshaft.	4

