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Over the years, there has been considerable interest in the area of chaos-based encryption due to the fact
that cryptographic algorithms and chaotic maps share a wide-range of similar characteristics. The major-
ity of chaos-based ciphers were designed for encrypting digital images and vast amounts of data. This
paper proposes a new chaos-based block cipher algorithm (CBCA) based on an improved logistic chaotic
map. To strengthen the performance of the classical logistic chaotic map, a new chaotification method
based on a multiplicative inverse function is used which leads to improved properties such as ergodicity
and entropy, both of which are desirable for cryptographic applications. The secret key is used to perturb
the chaotic variables, and these perturbed variables are used to produce data sequences for the block
cipher’s diffusion and confusion structures. The permutation (diffusion) structure is controlled by an
ergodic chaotic map, while the substitution (confusion) structure is controlled by the chaotic points
themselves. This new ergodicity-based diffusion approach provides higher security and efficiency. The
proposed algorithm not only possess good statistical properties provided by the enhanced chaotic
map, but it is also key sensitive and uniformly distributed. Statistical evaluation of the proposed algo-
rithm was performed using text and images as inputs to depict its capability to secure various types of
media. The performance of the proposed cipher is then compared to other recently proposed algorithms
in literature. The performance comparison indicates that CBCA is efficient, secure and that it can be used
to encrypt both small and large amounts of data.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction between the plaintext and ciphertext must be obscured, whereby
The rising popularity of digital chaos, notably in the design of
encryption algorithms, is due to a set of distinct properties. Firstly,
digital chaos is a source of entropy that can be leveraged to provide
confusion and diffusion properties. To achieve confusion, the rela-
tionship between the secret key and ciphertext must be obscured,
such that each bit of the secret key must affect various parts of the
ciphertext (ideally, all ciphertext bits should change if a single
secret key bit is modified). Diffusion is where the relationship
changes to a single bit of plaintext should affect half of the bits
in the ciphertext. In classical block ciphers such as substitution-
permutation networks (SPN) or generalized Feistel networks
(GFN), confusion and diffusion properties are achieved through
the use of substitution boxes and permutation/shuffling respec-
tively. Cryptosystems can use data sequences generated from a
chaotic system to permute and substitute data values
(Alshammari et al., 2021). Diffusion and confusion are fully con-
trolled by users through the secret key that is used to generate
chaotic parameters and initial conditions. In many chaos-based
encryption algorithms, achieving confusion and diffusion involve
operations that are slightly different than classical ciphers. Diffu-
sion is generally achieved by substituting plaintext values with
new ones generated based on prior plaintext values and chaotic
maps. This is usually performed twice (from start to end, followed
by end to start) to ensure that plaintext values are fully diffused.
Confusion is generally fulfilled through key-dependent permuta-
tion, whereby the permutation patterns are generated using a
chaotic system initialized using the secret key.
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Secondly, the plaintext is either divided into set of non-
overlapping blocking with limited size for conventional block
ciphers or encrypted word by word in the case of a stream cipher.
Chaos-based cryptosystems, on the other hand, were designed to
process a single, large block for plaintext such as in previously pro-
posed chaos-based image encryption algorithms (Niyat et al.,
2017; Hua et al., 2019; Alawida et al., 2019), chaos-based video
encryption algorithms (Valli and Ganesan, 2017; Wen et al.,
2019), chaos-based image watermarking schemes (Alshoura
et al., 2022) and chaos-based hash functions (Teh et al., 2020;
Alawida et al., 2021; Alawida et al., 2020). To accommodate larger
sizes of plaintext, the cryptosystem only needs to generate a longer
data sequence by iterating its underlying chaotic system. There-
fore, digital chaos can potentially be used to protect large amounts
of data for different applications. Thirdly, the underlying chaotic
systems are sources of entropy that can be easily replaced or
swapped out for another. Thus, if newer, more secure chaotic sys-
tems are available, they can be easily implemented into existing
chaos-based cryptosystems for improved security (Lian et al.,
2005). This flexibility is an advantage of a chaos-based cryptosys-
tem (Alawida et al., 2021). Lastly, the diffusion and confusion oper-
ations that are inherent in nearly all chaos-based cryptosystems
can be integrated and performed simultaneously (Alawida et al.,
2019). These properties imply that a chaos-based algorithms can
be designed to encrypt large amounts of with reduced computa-
tional overheads.

As with other symmetric-key primitives, chaos-based cryp-
tosystems also rely on secret or encryption keys which are used
to derive initial conditions and control parameters. These parame-
ters are then used to generate a chaotic data sequence which can
be used in diffusion and confusion operations. A slight change to
the chaotic variables will generate a completely new chaotic data
sequence, which then leads to an entirely new output (a new
ciphertext). Thus, the secret key in chaos-based cryptographic
algorithms must be subjected to security analysis and have a key-
space large enough to withstand brute force attacks (Alawida et al.,
2021; Zhu and Zhu, 2021). The number of chaotic iterations
required to generate a data sequence is proportionate to its length.
As floating-point numbers are usually used to implement chaos-
based cryptosystems in software, this incurs a computational over-
head that is too costly for encrypting small amounts of data (such
as text). Therefore, the use of chaos-based encryption for smaller
data sizes remains an open problem, where there is still room for
improvement in terms of reducing computational overhead.

On the other hand, public-key cryptography is another major
direction in cryptography, which are usually based on mathemati-
cal hard problems. The main distinction between symmetric and
asymmetric-key is that the latter uses distinct keys for encryption
and decryption; a public key and private key. Depending on how
the keys are used, asymmetric-key ciphers can not only provide
confidentiality but also authentication and non-repudiation. Gen-
erally, public key ciphers are considered more secure than their
symmetric-key counterparts due to their underlying mathematical
hard problems. However, public-key ciphers are computationally
inefficient, especially when used with longer messages. Thus,
asymmetric encryption is usually used for key distribution or to
exchange secret parameters in most security protocols. In chaos-
based asymmetric encryption, chaotic maps such as Chebyshev
and logistic map (Shakiba, 2021) have been used to generate two
separate keys. Chaotic synchronization is another technique that
has been used to improve security and to resist attacks such as
the majority flipping attack (Pisarchik and Zanin, 2012). However,
these algorithms still suffer from high computational costs.

The trade-off between security and computational efficiency is
a well-documented, open problem for chaos-based encryption
algorithms (Lian et al., 2005; Alawida et al., 2020), whereby effi-
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ciency is usually sacrificed to achieve optimal security. We address
the aforementioned problem by proposing a chaotic block cipher
algorithm (CBCA) that possesses desirable properties such as
ergodicity, aperiodicity, randomness, and sensitive dependence
on initial conditions. The classical logistic map is enhanced to pos-
sess improved security features which reflects upon the resulting
diffusion and confusion operations in CBCA. CBCA achieves both
diffusion and confusion properties simultaneously based on chao-
tic data sequences. A secret key is used to generate the chaotic
variables (initial condition and two control parameters) to make
CBCA highly sensitive to key values. The proposed algorithm
encrypts a plaintext without dividing it into blocks to ensure that
confusion and full diffusion can be achieved in only two rounds.
One of the novel features of the proposed algorithm is that its dif-
fusion property is achieved using a permutation pattern generated
based on the chaotic map’s ergodicity to provide higher security
and remove correlations between ciphertext values. Both confu-
sion and diffusion properties are also achieved simultaneously
using a substitution process that involves prior plaintext words
and chaotic values generated based on the secret key. Statistical
results indicate that CBCA has better security characteristics than
its peers, and can encrypt data of any size with high efficiency. Fur-
thermore, the proposed algorithm is secure against different well-
known attacks. The main contributions of this paper include:

� A new method to enhance the logistic map to achieve high
chaotic complexity and a large chaotic range.

� A new chaos-based block cipher algorithm (CBCA) based on
simultaneous diffusion and confusion operations.

The remaining sections of this paper are as follows: Section 2
provides a related work and Section 3 details the new enhanced
chaotic map and its security analysis followed by CBCA in Section 4.
A discussion of the experimental results is provided in Section 5.
Application of CBCA in image encryption is discussed in Section 6
before the paper is concluded in Section 7.
2. Related work

In literature, cryptosystems based on digital chaos were mostly
designed for a broad range of multimedia data types that includes
image, audio, and video. Fewer algorithms were proposed specifi-
cally for textual data. In Albhrany et al. (2016), a chaotic map
was used to design a new block cipher to encrypt textual contents.
A plaintext was divided into a set of ð8� 8Þ-byte blocks, before
permutation and S-boxes were employed to achieve the diffusion
and confusion properties. Despite having a large key, the resulting
cryptosystem has low entropy and security level. Murillo-Escobar
et al. (4953) proposed a chaos-based text cipher, for which a set
of rules were employed to achieve a higher throughput. Optimized
logistic chaotic maps generated pseudo-random number
sequences which were used in various operations. The scheme
has a plaintext-dependent key generated using characteristics of
the plaintext. Although the cipher achieved higher encryption
speeds, it has a small chaotic parameter space, which leads to a
smaller key space.

Yasser et al. (2020) proposed novel chaos-based multimedia
encryption algorithms based on 2D chaotic maps. The algorithm
relied on chaotic perturbation in both diffusion and confusion
rounds, where different chaotic maps were used to encrypt differ-
ent data types. The proposed cipher claims to achieve a throughput
of 1.6 Megabytes per second. However, the scheme suffers from
poor diffusion, whereby changes to one bit of the plaintext does
not propagate throughout the ciphertext, making it susceptible to
differential attacks. Another encryption algorithm for textual data
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was proposed by Volos et al. (2013). The logistic map (which unfor-
tunately has a limited chaotic range) was employed. The cipher
relies on simple operations (exclusive-OR) that can be efficiently
realized on a standard computer. Lian et al. (2005) proposed
another block cipher based on the chaotic standard map which
has three parts: the key generator, diffusion function and confusion
based on the standard map. The skewed tent map was used to gen-
erate the secret key. Unfortunately, their design requires multiple
rounds of confusion operations to achieve optimal security.

Abdullah and Khaleefah (2017) proposed a hybrid text encryp-
tion and image steganography algorithm based on chaos and image
secret sharing. Firstly, a text message is encrypted and the cipher-
text is converted into multiple shadows based on the secret shar-
ing scheme. These shadows are then embedded in multiple host
images. The designers claim that the embedding capacity is high
and the proposed scheme has a large keyspace. However, the pro-
posed algorithm uses a simple chaos-based algorithm to perform
encryption. Its resistance to different well-known attacks was not
analyzed. Kordov (2021) also proposed a chaos-based cipher for
text-based data. Two chaotic maps were used to generate a pseu-
dorandom number and the text is converted into a bitstream
which is finally used to encrypt the text using an exclusive-OR
(XOR) operation. The proposed cipher is essentially a stream cipher
based on the chosen chaotic maps.

Arifin et al. (2021) introduced a new cipher that improves upon
the conventional hill cipher based on the Bernoulli chaotic map to
increase its key length. The Bernoulli map is used to build a uni-
modular matrix. Text is then converted to integers and then per-
mutated using the improved hill cipher. As the main goal is just
to enhance the conventional hill cipher, its feasibility to secure
real-world data still requires further study. Alshammari et al.
(2021) proposed a new lightweight encryption algorithm to pro-
tect data collected Internet of Things (IoT) sensors. It was essen-
tially a modified AES algorithm that uses a new chaotic S-box.
Despite having good cryptographic properties and a high level of
randomness, this was mainly due to the underlying structure of
AES rather than the modified S-box. In addition, AES is not known
for its lightweight implementation and may not be suitable for IoT
devices that have limited processing capabilities.
3. Chaotic map and analysis

Chaotic maps have been used in many security-related applica-
tions such as image encryption, hash function, and watermarking
algorithms. One-dimensional (1D) chaotic maps have one system
variable and one control parameter. Hence, they are very fast and
are easy to implement in software. However, 1D classical chaotic
maps such as the logistic map have limited chaotic range and
low chaotic performance. Directly using these maps in crypto-
graphic applications may result in security issues. Therefore, many
remedial techniques such as the cascade, perturbation, delayed
chaotic and bit reversal systems were proposed to improve the
chaotic properties of 1D chaotic maps. In our work we introduce
a generic or flexible model that enhances the chaotic properties
and performance of 1D chaotic maps such as the logistic map, then
use it in the proposed cipher. Desirable properties such as high
ergodicity is very important to provide uniform distribution for
chaos-based cryptosystems.
3.1. Enhanced logistic map

The logistic map is a common chaotic map used in many appli-
cations. Despite having only one system variable and control
parameter, it has the capability to produce chaotic behaviors.
Due to its simplicity, it is faster than most 1-dimensional maps
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and can depict chaotic behavior when its control parameter is set
close to 4. The logistic map is mathematically defined as

FLðxnþ1; rÞ ¼ FLðr � xn � ð1� xnÞÞ ð1Þ
where xn is the system variable, for which x0 is the initial condition,
and r is a control parameter with a range of [0,4]. However, the
chaotic parameter range is very small and the overall map has
low complexity. Thus, there have been a number of chaotification
methods proposed to enhance its chaotic behavior and widen its
chaotic parameter range (Alawida et al., 2019; Alawida et al.,
2020). Some other approaches still lead to small chaotic ranges or
require the use of other chaotic maps to enhance the logistic map,
leading to increased computational overhead. In this paper, we pro-
pose a new chaotification method based on perturbing the underly-
ing chaotic map. This is achieved by using the chaotic sequences
generated by the latter in a generic equation with high sensitivity
due to the use of a multiplicative inverse function. The proposed
chaotification model has a generic (i.e. not specific to a particular
chaotic map) mathematical structure described as

xnþ1 ¼ 2k

2FLðxn ;rÞ

 !
mod1 ð2Þ

where xn is system variable and bounded between 0 and 1, r is a
control parameter between 0 and 1 (for a fair comparison with
the classical logistic map, we will limit r between 0 and 4 in our fol-
lowing experiments). The logistic map function, FL can be replaced
with any other chaotic map. The n is the number of iterations while
k is a new parameter that balances the new map’s computational
complexity and its statistical properties. If k is large, the chaotic sys-
tem will have improved chaotic behavior but takes longer to com-
pute. As a result, we recommend limiting the range to k 2 ð5;15Þ.
For our experiments, we select k ¼ 10 as it falls right in the middle
of the recommended range. The result of computing the logistic
map is used as an exponent of the denominator to increase sensitiv-
ity. The final modulo operation ensures that the chaotic point
remains within the range of x 2 ½0;1�.

The proposed function is designed to be a fraction as it leads to
improved statistical properties (Alawida et al., 2019). 1

xn
always

results in a value larger than 1 when xn 2 ð0;1Þ. Performing the
modulo operation will further increase the function’s sensitivity

and randomness. The fraction, 2k

2FL ðxn ;rÞ
is a generalization of the func-

tion introduced in Alawida et al. (2019). To depict the chaoticity of
the proposed model, we provide the following mathematical proof:

Lemma 1. The fractional function 1
x is chaotic and highly sensitive to

initial conditions whereas the logistic map only has chaotic behavior in
the range of r 2 ð3:67;4Þ. 1x is chaotic under the modulo operation and
has high sensitivity because a small change to xn will result in a large
value (after solving for 1

x) prior to applying the modulo operation.
Proof. Let C be the difference between two values, x0 and y0. If C is
a small real number (implemented using the IEEE 754 double float-
ing point number), then the result after the first iteration of func-
tion 1

xn
will be large (� 1). This is mathematically depicted as

jx0 � y0j ¼ jCj
j 1
x0�y0

j ¼ j 1C j
Then; jCj < j 1C j; and C has two cases

1 : jCj is a small value; j 1C j ¼ C � 10P; where P is the number

of digits after the decimal point

2 : jCj is a large value; j 1C j > 1

ð3Þ
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The result after only one iteration is a large difference between
two consecutive state variables. The modulo operation removes
the integer portion of the final result. As the state variables x0 and
y0 are real numbers between 0 and 1, the inverse of their
difference, 1

C will always be a large value, thus amplifying the
sensitivity of the overall chaotic model. h
Fig. 2. LE values of the logistic map and enhanced logistic map under the same
parameter settings.
3.2. Chaotic analysis

3.2.1. Bifurcation diagram
Logistic map has a small chaotic parameter range and contains

many windows of periodicity, indicated by unshaded regions in its
bifurcation diagram shown in Fig. 1(a). When used for crypto-
graphic applications, these periodic regions must be avoided. Thus,
when the control parameter value is used as part of the secret key,
the overall keyspace is greatly reduced. Therefore, increasing the
chaotic parameter range helps to overcome brute force attacks
due to the increased keyspace. To study chaotic parameter range,
bifurcation diagrams can be used to represent the relationship
between chaotic points and control parameters. Fig. 1(a) and (b)
show the bifurcation diagrams of the logistic map and its proposed
enhancement. We can see that the new map no longer has win-
dows of periodicity and the state variable, x is evenly distributed
between 0 and 1 regardless of r. This implies that the proposed
model has not only eliminated the periodic windows of the logistic
map but also enlarged its chaotic parameter range.

3.2.2. Lyapunov exponent
Sensitivity to small changes to initial conditions and control

parameters play a big role in chaos-based cryptographic applica-
tions. LE is a mathematical indicator that can be calculated under
different initial conditions and parameter settings. A chaotic map
with large and positive LE values have chaotic points that diverge
after a shorter period of time (fewer iterations) as compared to
chaotic maps with smaller or negative LE values. In other words,
larger LE values imply increased unpredictability and sensitivity.
In contrast, negative and zero LE values indicate periodic behaviour
and chaotic points that converge after a number of iterations. We
calculate the LE values of both the classical and enhanced logistic
Fig. 1. Bifurcation diagrams of the (a) Log
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maps under the same initial conditions and parameter settings.
Fig. 2 shows the LE values of two chaotic maps. We can observe
that the new enhanced logistic map has larger positive LE values
for nearly the entirety of the r 2 ½0;4� range whereas the logistic
map only has a small region of positive LE values. These results
confirm that the enhanced logistic map has higher unpredictability
and sensitivity as compared to its classical counterpart.

There are some of values of the control parameters are produce
non-chaos such as 0.28 and 2.15, these parameters produce the
fixed points after a few iterations of the map. A fixed point means
that the chaotic map generate the same input xj ¼ f ðxj; rÞ. Each
chaotic map can generate fixed point, but the type of point is deter-
mined if the chaotic behavior attracted to the fixed or diverge on it.
To analyze the stability of fixed points, we calculate the Jacobian
matrix from the derivative of Eq. (2). To obtain accurate results,
mod operation is not used in the Jacobian matrix. The Jacobian
matrix of Eq. (2) is calculated as

f 0ðxÞ ¼ ln 2ð Þr � 2x� 1ð Þ � 210�r� 1�xð Þx

where f 0ðxÞ is derivative result for any value of x and r.
When the Jacobian matrix of fixed points goes outside the inter-

val [-1,1], the fixed points are unstable and all surrounding states
will not attract them. When the Jacobian matrix of fixed points
falls within the interval [0,1], the fixed points are attractors to
adjacent states, indicating that the system is stable. We use
r ¼ 0:28 and the fixed point is xn ¼ ð0:502405747468856Þ. The
istic map, (b) Enhanced logistic map.



Fig. 4. FuzzyEn values of the logistic map and enhanced logistic map under the
same parameter settings.
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jacobian matrix of the fixed points is 0.9109, which indicates that
the proposed model at this fixed point is attract other states, indi-
cating non-chaotic behaviour. The second control parameter
r ¼ 2:15 is used to generate the chaotic sequence, the chaotic
sequence after a few iterations generate neared points, which are
very near to each other. Fig. 3 show the chaotic sequence when
r ¼ 2:15 and x0 ¼ 0:2. It shows the chaotic points are very close
to each other. As such, we should ensure that the control parame-
ters are always taken from within the chaotic range.

3.2.3. Fuzzy entropy
A chaotic system is described as complex when a lot of informa-

tion is needed to explain its behavior. A highly complex system can
produce random outputs with no observable statistical patterns. To
evaluate complexity for a chaotic map, we rely on the fuzzy
entropy (FuzzyEn) metric because it uses the Gaussian function
instead of Heaviside function to precisely compute the complexity
estimate (Xie et al., 2011). The Gaussian function is written as

Hðwm
i;j; tÞ ¼ expð�ðwm

i;jÞ2
t

Þ; ð5Þ

wherem is embedding dimension that is set to 2 for a standard esti-
mation, t is the tolerance value, w ¼ maxi;j2ð0;m�1ÞjxðiÞ � xðjÞj is the
maximum distance between two sequences equivalent to m.

For the two chaotic maps, logistic and enhanced logistic map,
FuzzyEn values are estimated under the same parameter settings
and initial conditions. Fig. 4 shows the FuzzyEn values for both
maps. We can see that the enhanced logistic map has large Fuz-
zyEn values as compared to the classical logistic map which indi-
cates elevated complexity. Thus, it is more difficult to identify
patterns that can describe the enhanced map’s behavior.

3.2.4. Local Shanonn Entropy (LSE)
Entropy is a good measure of randomness and unpredictability.

For a chaotic system, entropy can also be used as an indicator of
the ergodicity property. If a chaotic trajectory can be visited
equally all sub-regions in the phase space, then a chaotic map is
ergodic, where each sub-region has equal effect on chaotic behav-
iors. On the other hand, a chaotic trajectory that only visits certain
sub-regions and remains in particular sub-regions for long periods
of time (multiple iterations), this implies that the system is more
predictable, has a biased distribution, strong correlation between
chaotic points, and is susceptible to chaotic parameter estimation
attacks.

In this experiment, we use local Shannon entropy (LSE) to quan-
titatively evaluate the ergodicity of both the enhanced and classi-
cal logistic map. LSE values are obtained by calculating Shannon
Entropy (SE) for non-overlapping blocks of the chaotic trajectories
(Wu et al., 2013). SE is calculated as

HjðSÞ ¼
XL�1

i¼0

pðSiÞlog2
1

pðSiÞ ; ð6Þ

where j < K is the index of the current non-overlapping block, K is
the total number of non-overlapping blocks being tested, pðSiÞ is the
Fig. 3. Chaotic sequence when r ¼ 2:15 and x0 ¼ 0:2.
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probability of occurrence of a symbol, Si 2 ½0;1�, and L ¼ 256 is
number of intervals. LSE is the mean of the SE values calculated as

H ¼
XK
j¼1

HjðSÞ
K

; ð7Þ

where K is the number of non-overlapping blocks being tested. A
chaotic trajectory can successfully pass the LSE test if the LSE value
falls between two critical values, Hleft and Hright . This implies that the
chaotic trajectory can visit all intervals of the phase space. Hleft and
Hright are calculated as

Hleft ¼ lH �U�1ða2ÞrH=
ffiffiffiffi
K

p

Hright ¼ lH þU�1ða2ÞrH=
ffiffiffiffi
K

p ð8Þ

where lH and rH are the mean and the standard deviation of the

LSE values, U�1ð:Þ is the inverse cumulative distribution function
(CDF) of the standard normal distribution Nð0;1Þ, and a is the sig-
nificance level. In our experiments, we set a ¼ 0:001 and K ¼ 30.

The enhanced logistic map and logistic map are used to gener-
ate 105 chaotic points each, and the phase space is divided into 256
intervals. Next, K non-overlapping sequences with 1936 chaotic
points are randomly selected for testing. The critical values are cal-
culated as Hleft ¼ 7:9015156987 and Hright ¼ 7:903422936. Fig. 5
shows the LSE values for the enhanced logistic chaotic map and
the underlying logistic chaotic maps for different control parame-
ters. Results show that the enhanced map has high LSE values
which implies higher ergodicity and randomness.

The enhanced map managed to pass the LSE test for most of its
control parameter settings, where the LSE values fall between the
critical points. In contrast, the classical logistic map was not able
to pass the LSE test for the entirety of its control parameter range.
These results point out that the enhanced logistic map can provide
higher ergodicity than the classical logistic map and is better sui-
ted for sensitive applications such as symmetric-key encryption.

Next, we compare LSE values for different K when a ¼ 0:001.
These LSE values were been calculated for a randomly generated
image which is basically the equivalent of a random number
sequence. A comparison is made between the enhanced map and
logistic map and the standard LSE values as reported in Wu et al.
(2013). LSE values that fall between these standard LSE values
Fig. 5. LSE values of the enhanced logistic map and logistic map under the same
parameters settings.



Table 2
Chaotic map performance comparison.

Chaotic maps LE FuzzyEn

Enhanced logistic map 4.121 1.832
Logistic map 0.212 0.654
TM-DFSM (Alawida et al., 2019) 1.387 1.421
Delay logistic map (Liu and Miao, 2017) 1.728 1.622
LSC (Hua et al., 2019) 1.412 1.532
TSTS (Alawida et al., 2019) 1.822 1.638
TLM (Zhou et al., 2015) 0.812 0.898
LCT (Hua and Zhou, 2016) 0.464 0.536
C-P map (Zhu et al., 2018) 0.356 0.235
Sine-G (Alawida et al., 2019) 1.151 1.535
LS-S map (Lan et al., 2018) 0.345 0.457
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Hleft and Hright are considered to have passed the LSE test. The chao-
tic map trajectories were generated using r ¼ 3:999and x0 ¼ 0:33
for a fair comparison. Table 1 shows the LSE results for varying K
values. The enhanced logistic map has LSE values that passed the
LSE test for different K values while the logistic map failed in all
instances. Again, the results imply that the enhanced map leads
to improved randomness and ergodicity as compared to its peer.

However, the enhanced logistic map has some low FuzzyEn val-
ues especially in the region of r 2 ð0;0:5Þ. The reason behind this
phenomenon is the fixed point that occurs when using a control
parameter value of r ¼ 0:28. The enhanced chaotic map under this
control parameter falls into a fixed point in fewer than 287 itera-
tions, and the fixed point attracts other states. In contrast, control
parameter 2.15 creates a fixed point after large number of itera-
tions that exceed 100,000 iterations, which allows to calculate Fuz-
zyEn in the normal way.
3.3. Comparison and discussion

The newly enhanced chaotic map has better chaotic perfor-
mance than the logistic chaotic map in all security aspects. We
now compare the proposed map with other enhanced chaotic
maps in literature, using LE and FuzzyEn as metrics for evaluating
sensitivity and complexity respectively. We implement all of the
improved chaotic maps on the same device and platform for a fair
comparison. We calculate the mean values of these indicators for
all the selected chaotic maps and tabulate them in Table 2. One
can observe that the proposed enhanced logistic map outperforms
the other chaotic maps in both aspects.

Results suggest that the enhanced chaotic map outperforms the
standard logistic map in terms of bifurcation properties, LE and
FuzzyEn measures. The proposed chaotification model is the driv-
ing force behind the improved performance, which relies on the
multiplicative inverse function to increase the sensitivity of the
chaotic map. The output of the classical chaotic map (logistic
map) is also employed as an exponent of the denominator, specif-
ically in the multiplicative inverse function to further boost sensi-
tivity. The final output will serve as the modulo function 1

x, which
exhibits more chaotic behaviour than the standard chaotic map
(Alawida et al., 2019).
4. Chaotic block cipher algorithm (CBCA)

In this section, we use the enhanced chaotic map to design a
new block cipher. To showcase the capability of the proposed
map in cryptographic applications and to overcome some draw-
backs of prior chaos-based encryption algorithms. The chaotic
map will be involved in both diffusion and confusion operations.
A chaotic map with good statistical properties contributes towards
the cipher’s resistance to attacks such as correlation, brute force
and differential attacks. In the proposed encryption algorithm,
we use the enhanced logistic map to achieve diffusion and confu-
sion properties simultaneously. The map’s ergodicity property is
leveraged in the permutation process while its chaotic sequence
is used for substitution. CBCA can encrypt a plaintext of any size,
represented as 8-bit unsigned integers. CBCA has two stages: the
Table 1
Comparison of LSE values of the enhanced map and logistic map with distinct K values, r

K 30 40

Hleft 7.901515698 7.901754103
Hright 7.903422936 7.903184531
Enhanced map 7.902684751 7.902487545
Logistic map 7.676137736 7.679071335
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first is to generate the chaotic variables using a secret key, which
will then be used to generate a data sequence used in the encryp-
tion process. This is equivalent to the key scheduling algorithm of
conventional block ciphers. This second stage is the encryption
process itself. Both stages are detailed in the following subsections.

4.1. Chaotic variable generation

In this section, we use the secret key to generate the initial con-
dition and control parameter of the chaotic map, both of which are
henceforth referred to as chaotic variables. A secret key should
have a length of at least 128 bits to resist brute force attacks. The
main goal is to design an algorithm that generates the chaotic vari-
ables with high sensitivity to the secret key. Prior chaos-based
algorithms generally use secret key bits to construct the chaotic
variables in a direct manner: using the key bits to modify the
fixed-point or floating-point representation of these variables. In
the proposed algorithm, we still rely on both floating-point and
fixed-point numbers, Uði; f Þ, where i is the number of bits are used
to represent the integer portion of a real number while f is the
number of bits required to represent the fractional portion of the
real number. The resulting fixed-point number can be calculated

as
P52

n¼0f n � 2�n.
Rather than using the key bits to modify or instantiate the chao-

tic variables directly, we use the secret key to perturb their values
using one of the chaotic perturbation methods. We first divide the
secret key into consecutive, overlapping 52-bit blocks, each of
which presents one chaotic point (system variable) bounded
between 0 and 1. Each 52-bit value is used to perturb the control
parameter and initial chaotic point (initial condition). These
divided key points are used to create new chaotic points and con-
trol parameters before using them to generate new chaotic points
(data sequence). The last chaotic point and two control parameter
values will be used for next steps in CBCA. The steps of key gener-
ation are below:

1. Divide the secret key into consecutive, overlapping 52-bit
blocks. For example, Block 1 comprises bits 1 to 52 of the secret
key and Block 2 comprises bits 2 to 53 of the secret key. This
will continue until the final block which is made up of bits 77
to 128. Thus, the total number of blocks is 77. Using these over-
lapping blocks increases the sensitivity of the chaotic variables
to the secret key.
¼ 3:999 and x0 ¼ 0:33 for two maps.

50 60 70

7.901897145 7.901992507 7.902060623
7.903041489 7.902946127 7.902878011
7.902854625 7.901999857 7.902711354
7.677496852 7.6766976452 7.676048960
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2. The 52-bit values are fixed-point real numbers between 0 and 1
used as seed values (or initial values), and also to perturb the
control parameter. The functions used to modify the chaotic
variables are as follows:
xi ¼ðxþ keyiÞmod0:99999 ð9Þ
ri ¼ððr þ xþ keyiÞ � 232Þmod3:99999 ð10Þ

where xi and ri denote the seed values and control parameters
respectively. keyi is the i-th 52-bit block obtained from the secret
key. We select 0.99999 and 3.99999 to ensure the resulting
chaotic variables remain in the appropriate phase space, thus
avoiding weak key scenarios (Teh et al., 2020).

3. Iterate the enhanced logistic map 77þ R times, where the value
of R depends on whether the resulting chaotic point and control
parameter values are being generated for the first or second
round of CBCA. When generating the chaotic variables for the
first round of encryption, we set R ¼ 10. Then, we iterate the
map an additional 10 times to produce the second set of chaotic
variables for the second round of encryption (i.e. R ¼ 20 in
total). The two resulting data sequences are completely differ-
ent. As mention in the Section 3.2.2, the enhanced map has
excellent LE values on the various parameter settings.

4. The last seed value and two control parameters are used in the
next CBCA round. The generated chaotic variables are used in
the block cipher to generate data sequences that will use in
the permutation and confusion operations.

The steps involved in generating the chaotic variables (and sub-
sequently, their corresponding chaotic sequences and permutation
patterns) only need to be performed once for each secret key. Thus,
similar to regular encryption algorithms, this can be pre-computed
and does not incur additional computational overhead.

Algorithm1: Generation of chaotic variables (GCV)
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Algorithm1 summarizes the steps involved in generating the
new chaotic variables (seed chaotic point and list of the control
parameters). The proposed cipher is a symmetric-key cipher, so
the same secret key is used by both sender and receiver. The secret
key should be exchanged securely using conventional methods
such as public-key encryption. Unlike conventional block ciphers,
the secret key is flexible, whereby a user can select any key size
depending on their application’s requirement.

4.2. Chaotic block cipher algorithm

In this section, we describe the design of the block cipher itself.
CBCA can achieve both diffusion and confusion simultaneously
based on the ergodicity of the enhanced chaotic map and its chao-
tic points. The secret key is used to generate chaotic variables that
will be used to generate data sequences for encryption and decryp-
tion. Let Np denote the number of 8-bit words in a plaintext. The
enhanced logistic map is iterated Np times and the resulting chao-
tic trajectory (data sequence) xn, where n ¼ f1;2;3; . . . ;Npg is
obtained. The chaotic trajectory should be highly random, aperi-
odic and have a high LSE which implies ergodic behavior. yn, which
denotes random indexes of the 8-bit words in the data sequence, is
calculated from the chaotic points Xn. These random indexes form
a set, e.g., yn ¼ f8;29;77;1; . . . ;Np;4;5g. Also, let Permn, where
n ¼ f1;2;3; . . . ;Npg, represent an array of size Np that represents
the permutation pattern used in the proposed block cipher. The
steps of the proposed CBCA are as follows:

1. The phase space of the enhanced logistic map is divided into a
set of non-overlapping intervals Ii, where i ¼ f1;2;3; . . . ;Npg.

2. The interval that each chaotic point generated by the chaotic
map falls into will be noted. For example, assume the 1st chao-
tic point, y1 falls into interval number four, I4. Thus, we set the
fourth permutation array element as the index of y1, which is
Perm4 ¼ 1. If a chaotic point falls into the intervals that have
been visited before, then the index of that chaotic point is put
into the another 1D array, En. The chaotic map will be iterated
until it generates its final ðN � pÞ-th chaotic point.

3. Array values stored in En is used to fill up the remaining array
entries in Perm (in order of how the values are stored in En),
completing the final permutation pattern, Perm. By generating
Perm based on the ergodic nature of the enhanced map, we
can ensure that the permutation pattern is sufficiently random-
ized and evenly distributed. Fig. 6 provides a numerical exam-
ple for the permutation process, whereby 10 chaotic points
(x1; x2; . . . ; x10) are generated. For example, x1 ¼ 0:81 falls under
interval I9. Thus, the value stored in Perm9 ¼ 1. Next, x2 ¼ 0:76
falls under interval I8, thus Perm8 ¼ 2. If another chaotic point
falls under the same interval, e.g. x4 ¼ 0:73 in I8, the index of
the chaotic point will be stored in E. After all chaotic points
are generated and their corresponding indexes are mapped to
Perm and E, the values stored in E will be used to fill up the
remaining empty entries in Perm.

4. To change (or effectively substitute) each 8-bit word in the
plaintext, they are XOR-ed with chaotic points after they are
permuted. These operations can be mathematically summa-
rized as
swapðCi;CPermi
Þ ð11Þ

Ci ¼ ðCi � xi � GÞ ð12Þ
where Ci is the i-th plaintext/intermediate ciphertext character
and the swapðval1;val2Þ function swaps the character at position
val1 with the one at position val2. This permutation and substi-
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tution process is repeated for each word in the plaintext/inter-
mediate ciphertext. xi are data points that are obtained after
being converted into 8-bit unsigned integers by
xi ¼ uint8ððxi � 232Þmod256Þ. G is an 8-bit unsigned integer that
represents a prior plaintext/ciphertext word. Depending on the
encryption round, selection of G is based on the following:
G ¼
i ¼ 1 and round ¼ 1; 0
i ¼ 1 and round ¼ 2; ðCNp þ iÞ3 mod256

Otherwise; ðCi�1 þ iÞ3 mod256

8><
>: ð13Þ

The term, ðC þ iÞ3mod256, was selected to increase the impact of
prior ciphertext values to achieve diffusion. A small change in
the prior plaintext/ciphertext values will be amplified and sig-
nificantly impact the encryption of the remaining values.
Fig. 6. Permutati

Fig. 7. CBCA flowchart

Fig. 8. Plaintexts and corre
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5. The diffusion and confusion are simultaneously achieved by
permuting and substituting each word in the plaintext. The
ciphertext obtained is after two encryption rounds.

For the second round, the second set of chaotic variables
obtained after 77þ K where K ¼ 20 iterations of the key genera-
tion algorithm are used to generate another data sequence of
length Np. The same encryption steps are repeated. Fig. 7 shows
the flowchart of the steps involved in CBCA. Both confusion (and
to some extent, diffusion) are achieved by XOR-ing the plaintext
with chaotic points and previous plaintext words. Further diffusion
is achieved through permutation, influenced by the ergodicity of
the enhanced chaotic map. CBCA only requires two rounds to
achieve good diffusion and confusion properties while maintaining
a high encryption throughput. Further details of CBCA can be
obtained from Algorithm2.
on example.

of encryption side.

sponding ciphertexts.
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Algorithm2: CBCA algorithm
4.3. Chaotic block cipher decryption algorithm

Decryption merely requires the same operations as encryption
but in reverse order. To decrypt the ciphertext, we use the same
Algorithm1 but instead starting from round 2, followed by round
1. The first three steps of the encryption algorithm are reused with-
out modifications. In Step 4 and 5, the ciphertext is decrypted in
reverse order (from the last word to the first word) for both rounds.
The same secret key (used for encryption) must be used for decryp-
tion to successfully recover the plaintext.

4.4. Discussion

CBCA is proposed to encrypt the plaintexts of different sizes and
provide a high security margin by using digital chaos. As Diffusion
and confusion properties are very important encryption algo-
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rithms, CBCA was designed to ensure both properties are achieved
successfully. The advantages of CBCA are as follows:

� The enhanced logistic map has high LE and LSE values that
ensures highly chaotic behaviour and ergodicity, which then
reflects on the permutation/confusion process.

� Diffusion and confusion operations can be performed simulta-
neously each round. Many existing chaos-based schemes have
distinct diffusion and confusion rounds, leading to higher com-
putational complexity.

� In contrast to conventional block ciphers that require many
rounds (a recent cipher, SPEEDY, requires at least 5 rounds for
practical security (Leander et al., 2021)) to ensure strong diffu-
sion and confusion properties, CBCA requires at least two
rounds.

� The secret key has an effect on both diffusion and confusion
properties, unlike in conventional cryptosystems where opera-
tions such as substitution or permutation are static and not
key-dependent.

� The chaotic variables generated from the secret key are highly
sensitive to slight key changes due to the chaotic perturbation
operations involved. In total, two initial chaotic points and four
control parameters are generated for the cipher’s 2-round
encryption process. Each chaotic point and control parameter
are represented as a 52-bit fixed-point numbers. This means
that CBCA depends on 260 bits in final chaotic variables to gen-
erate data sequences. Thus, the cipher can provide a security
level of up to 260 bits with a flexible key length.

5. Results and analysis

In this section, we experimentally evaluate the security, statis-
tical properties, and overall performance of CBCA. The various met-
rics involved include randomness, key sensitivity, plaintext
sensitivity, correlation and entropy tests. Apart from that, we also
analyze the encryption speed of CBCA for both small and large
amounts of data. Fig. 8 shows different plaintexts and their corre-
sponding ciphertexts; a small difference (as shown in red fonts) in
the plaintexts, lead to an entirely different ciphertext which is
noise-like. Note that the ciphertext is being displayed using Uni-
code symbols.
5.1. Ciphertext randomness testing

Block ciphers are ubiquitous primitives that can be used as
building blocks for other cryptographic primitives such as hash
functions and pseudo-random number generators. Regardless of
its application, the ciphertexts generated from a block cipher
should depict essential properties such as high complexity, long
cycle length (non-periodic behaviour), uniform distribution, and
efficiency. To test for statistical randomness, we apply the NIST
SP 800–22 test suite on CBCA. To generate the test samples, we
produce random ciphertexts by randomly toggling a single bit of
an arbitrary plaintext. A test sample is considered to have passed
each sub-test when Pvalue P a where a ¼ 0:01 is the significance
level. The number of test samples (ciphertexts) used for testing is
103, where each test sample has a length of n ¼ 106 bits. A plain-
text consisting of interleaved bit values of 1s and 0s,
10101 . . . ::01 is encrypted to produce the first test sample. The
other test samples are generated by toggling 1 bit randomly in
the plaintext. Based on results shown in Table 3, CBCA successfully
passed all 15-sub-tests of the NIST test suite. This implies that the
outputs of the block cipher are sufficiently random, evenly dis-
tributed, and complex.
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5.2. Correlation test

The correlation between adjacent characters can be used to
evaluate the diffusion property of a cryptosystem. We encrypt a
plaintext of length 216 bits and obtain its corresponding ciphertext.
The plaintext consists entirely of the same 8-bit word repeated N
times. The ciphertext should be uniformly distributed, such that
there will no longer be any correlation between adjacent charac-
ters. We compute the correlation coefficient among characters of
the ciphertext. The experiment is repeated for multiple plaintexts
to study further the behavior of the algorithm. Fig. 9 shows the cor-
relation correction results for 100 different plaintexts that are
obtained by toggling random bits in an original plaintext consisting
of interleaved 1s and 0s (101010. . .1010). It can be seen that CBCA
has no correlation between adjacent words as the correlation val-
ues are approximately close to zero.
5.3. Keyspace and sensitivity

The proposed cipher supports the secret keys equal to or larger
than 128 bits. Thus, the keyspace is at least 2128 bits or larger. The
initial chaotic variables that are constructed using the secret key
Table 3
NIST SP 800-22 results.

Sub-tests ciphertexts

Frequency 0.4251
Block frequency 0.3321
Cumulative Sums* 0.7354
Runs test 0.2152
Longest run 0.1243
Binary matrix rank 0.2564
FFT 0.5421
Non-overlapping template.* 0.3215
Overlapping template.* 0.6532
Overlapping template. 0.5241
Universal 0.3265
Approximate entropy 0.1782
Random excursions.* 0.3965
Random excursions variant.* 0.3854
Serial* 0.1265
Linear Complexity 0.9865

Success Counts 15=15

Fig. 9. Correlation values of 100 ciphertexts.

Fig. 10. Secret key sensitivity to small change.

8145
include the initial condition and control parameters, where 52-
bit sections of the secret key are used in the fractional portion of
their fixed-point representation. When testing the proposed
cipher, we use a standard secret key length of 128 bits. Rather than
using the secret key to initialize the chaotic variables directly, per-
turbation methods were used to ensure that every key bit has
equal effect on all chaotic variables. This increases the overall sen-
sitivity to the secret key and avoids weak key problems that affect
many existing chaos-based encryption algorithms. Thus, the over-
all keyspace is 2128, which is large enough to resist brute force
attacks (based on current computational capabilities).

To analyze key sensitivity of the proposed cipher, we observe
the effect of a 1-bit change to the secret key on the resulting
ciphertext. Firstly, the enhanced logistic map has high LE values
as mentioned in the Section 3.2.2, which reflects high sensitivity
to small change to chaotic variables. Secondly a small change to
the secret key will generate entirely new chaotic variables, and
subsequently lead to different chaotic sequences. In this experi-
ment, we change 1 bit of the secret key to obtain two closely
related secret keys. These keys are then used to encrypt the same
plaintext to obtain two corresponding ciphertexts. The test is
repeated for all 128 possible bit locations of the secret key. We
denote H as the variance ratio of each bit. Fig. 10 shows the results
of the key sensitivity for the different secret keys. We can see that
our algorithm has variance ratios of approximately 50% for the
secret keys indicating that our algorithm is extremely sensitive
to the secret key.

In the decryption algorithm, the key sensitivity is a very signif-
icant property. Decryption of a ciphertext even with a slightly
modified secret key should generate a completely different mes-
sage. In our algorithm, if a secret key is wrong, then the decryption
of the ciphertext results in noisy data. To depict the sensitivity of
the decryption algorithm to the secret key, we toggle one bit of
the secret key and decrypt the ciphertext. Correlation testing of
the decrypted ciphertexts (using both the original and wrong
key) is performed. The experiment is repeated for all the bits of
the secret key. Fig. 11 shows the results of the correlation testing.
We can see that the cipher’s decryption algorithm also has high
sensitivity to small changes to the secret key, whereby all correla-
tion values are close to zero.

5.4. Resistance to cryptanalytic attacks

Another advantage of the proposed cipher is that both its sub-
stitution and permutation operations are key-dependent. Thus,
any attacks that rely on approximating the behavior of the cipher’s
operations, such as differential, linear or algebraic attacks, are pre-
vented. Even if an attacker is able to obtain an approximation of
the substitution or permutation operations, the approximation is
only valid for that particular secret key. For example, to perform
a differential attack, the difference propagation and its correspond-
ing differential probability for nonlinear operations, such as S-
boxes or modulo addition, must be known. For ciphers relying on
S-boxes (e.g. SPN or GFN ciphers), the differential distribution table
Fig. 11. Secret key sensitivity to small change.



Fig. 12. Distribution of ciphertexts for 10,000 bits of plaintexts.

Fig. 13. Encryption speed comparison.
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for the S-boxes can be calculated (Biham and Shamir, 1991)
whereas for ciphers with additions modulo 2n operations (e.g.
ARX ciphers), the differential properties are evaluated with respect
to XOR-differences (Lipmaa and Moriai, 2001).

In the proposed cipher, the nonlinear operation can be found in
Eq. 12, when the plaintext/intermediate ciphertext word, Ci is
XOR-ed with xi. Although XOR is a linear operation, the value of
xi is generated from the chaotic map, which involves multiple non-
linear operations and is indirectly dictated by the secret key value.
In essence, Ci � xi is equivalent to an 8-bit key-dependent substitu-
tion operation, which substitutes Ci with another value. Unlike a
regular substitution operation, this operation is non-bijective
(one-to-many). To even begin estimating the differential proper-
ties of this operation, an attacker needs to know the key value or
equivalent key value (values of the chaotic variables), which needs
to be recovered via exhaustive key search or brute force attack. In
other words, differential cryptanalysis will have no computational
advantage over brute force. Due to the duality between differential
cryptanalysis and linear cryptanalysis, the same argument can be
applied to the latter technique (Matsui, 1994).

For algebraic attacks, nonlinear operations such as S-boxes are
represented as an over defined system of algebraic equations
(Courtois and Bard, 2007). The proposed cipher can be seen as
using an 8-bit key-dependent substitution operation that substi-
tutes each plaintext word in a dynamic manner, whereby the same
plaintext word in different locations in the plaintext will be substi-
tuted differently. Thus, an attacker cannot formulate the system of
equations to describe the substitution process. Even if it were pos-
sible, the system of equations need to be generated for different
lengths of plaintexts. Thus, due to the random and dynamic nature
of the substitution process (Courtois, 2004), we conjecture that the
proposed cipher is resistant to algebraic attacks.

Next, we provide some observations of the proposed cipher’s
security against the following broad classes of attacks:

Ciphertext-only attack (COA): COA is where an adversary
attempts to obtain information about the secret key or plaintext
merely by observing ciphertexts. As long as a block cipher gener-
ates statistically random outputs (bias-free), the adversary will
not be able to deduce any further information about the cipher.
In Section 5.1, it was already shown that CBCA successfully passed
the NIST statistical test suite, which implies security against COA.

Known-plaintext attack (KPA) and chosen-plaintext attacks
(CPA): KPA is where an adversary has a quantity of plaintexts (that
cannot be specifically chosen) and the corresponding ciphertexts.
CPA is similar to a KPA with the added advantage (for the adver-
sary) to choose plaintexts. KPA is less practical than a chosen-
ciphertext attack. If a block cipher is shown to be insecure against
KPA, it is also insecure against CPA (Biryukov et al., 2011). Earlier in
this section, we highlighted the CBCA’s security against differential,
linear and algebraic attacks, all of which fall under the CPA class of
attacks. We also further analyze CBCA’s security against both of
these classes of attacks in Section 6.

Chosen-ciphertext attacks (CCA): CCA is the inverse of CPA,
where an adversary can select a ciphertext and can obtain its cor-
responding plaintext. CCA is commonly deemed too strong of an
attack assumption, whereby mots ciphers that are not CCA secure
are still sufficiently secure for practical purposes. Generally, all
block ciphers (including AES) are susceptible to CCA when used
with common modes of operation such a cipher block chaining
(CBC), cipher feedback (CFB) and output feedback (OFB) due to
ciphertext malleability (Canetti et al., 2003). A CCA-secure encryp-
tion scheme can only be obtained by ensuring changes to the
ciphertext will result in decryption not producing any message
such as authenticated encryption modes like CBC-MAC (Rogaway,
2011).
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5.5. Distribution of ciphertext

A ciphertext has to be uniformly distributed to be secure
against different statistical attacks. To analyze CBCA for uniform
distribution, the following experiment was performed: First, an
arbitrary plaintext is generated and one bit is selected at random
to be flipped to generate a second plaintext. Both plaintexts are
encrypted, and their resulting ciphertexts are compared to identify
how many locations of bits have been changed. The experiment is
repeated 10,000 times, and the minimum, maximum, and mean
changed bit number is recorded. The plaintext size is 10,000 bits
and each location should be close to the ideal value to be uniform
distribution. Fig. 12 shows the distribution plot. It can be seen that
the toggled bit number varies around the range of 4390 and 6420.
The ideal value is 5000, which means the bit has been flipped
approximately 50% of the time. The proposed cryptosystem has a
mean flipped bit number of 566.2987, which is close to the ideal
value. That implies that the proposed cryptosystem has uniform
distribution even when a single bit of the plaintext has changed,
making it highly resistant to statistical attacks.
5.6. Speed analysis

The efficiency of an encryption algorithm is an important crite-
rion for cryptographic applications to minimize latency. Unfortu-
nately, for nearly all encryption algorithms, there exists a trade-
off between efficiency and security margins. To analyze the speed
of the proposed algorithm, we select DES for comparison. Gener-
ally, floating point numbers that are used in chaotic maps compu-
tations are much slower than binary operations. Thus, the
proposed cryptosystem was designed to achieve the Diffusion
and confusion in only two rounds to reduce the overall runtime
of the algorithm. The proposed cryptosystem and DES were imple-
mented on the same platform and Matlab (matlab.mathworks.-
com). The DES code source is used from Mahajan and Sachdeva
(2013). The runtime of both algorithms when encrypting plaintexts
of varying sizes using the same key is recorded. Fig. 13 shows the
time vs plaintext size plot for both algorithms. In general, we can
see that encryption time increases in proportion to plaintext size,
with CBCA having faster encryption speed than DES. CBCA encrypts
the plaintext as one block while DES requires the plaintext to be



Table 4
Comparison of the proposed cipher against other ciphers.

NPCR UACI SE CC

CBCA 99.61 33.32 7.9994 0.00021
Ref. Albhrany et al. (2016) 99.55 32.79 7.9964 �0.0193
Ref. Abdullah and Khaleefah (2017) 99.55 24.95 7.0215 0.0939
Ref. Yasser et al. (2020) 99.33 33.42 7.9993 0.3361
RC5 98.83 31.20 7.9683 0.0041
RC6 98.92 31.21 7.9754 0.0038
AES 99.61 33.54 7.9758 0.00052

Table 5
Comparison between RC5, RC6, AES, and CBCA at different aspects.

RC5 RC6 AES CBCA

Number of round (r) 1–255 20 10,12,14 2
Key space 0 to 2040 bits 128, 192, or 256

bits
128, 192, or 256 bits P 128

Block size in bits 32, 64, or 128 bits 64,128, or 256 128 Unlimited
Max block size in bits 128 256 128 Unlimited
Number of keys derived from key

schedule
2r + 2 2r + 4 4(r + 1) 1

Algorithm Structure Feistel-like
network

Feistel-like
network

Substitution and permutation
network

Simultaneous confusion-diffusion
operation

Chaotic map Does not exist Does not exist Does not exist Enhanced Logistic chaotic map

Fig. 14. (a) Lena plainimage (size 256� 256), (b) Lena Cipherimage, (c) Decrypted Lena, (d) Baboon plainimage (size 512� 512), (e) Baboon Cipherimage, (f) Decrypted
Baboon , (g) Small black box plainimage (size 1024� 1024), (h) Small black box Cipherimage, (i) Decrypted Small black box.
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Fig. 15. (a) Histogram of Lena plainimage , (b) Histogram of Lena Cipherimage, (c) Histogram of Baboon plainimage, (d) Histogram of Baboon plainimage, (e) Histogram of
Small black box plainimage, (f) Histogram of Small black box plainimage.

Fig. 16. Encryption results of the black and white images, (a) Black plain-image, (b)
Black cipher-image, (c) White plain-image and (d) White cipher-image.
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divided into multiple blocks which are processed separately using
a mode of operation such as cipher block chaining. Overall, CBCA is
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faster than DES and can encrypt a large amount of data in less than
one second, making it suitable for large multimedia files such as
images or videos.
5.7. Comparison

There are not many chaos-based ciphers designed specifically
for text-based data since the majority of them were proposed for
images or videos. Chaotic ciphers are suitable for encrypting large
amounts of data and can generate chaotic points to accommodate
varying plaintext lengths. When it comes to textual data, classical
encryption algorithms are usually adopted rather than any chaos-
based alternatives. Therefore, in this section, we compare the pro-
posed cipher to other chaos-based ciphers as well as classical ones.

We selected SE and resistance to differential attacks as a mea-
sure of randomness and diffusion. These two characteristics play
a significant role in the secure ciphers. Randomness is a measure
unpredictability whereas diffusion ensures that a cipher is highly
sensitive to small changes in the plaintext or key. We use the num-
ber of pixel change rate (NPCR) and the unified average change
intensity (UACI) to measure diffusion. High NPCR and UACI values
imply a high degree of sensitivity to small changes in the plaintext.
As for SE, high values close to 8 are desired and indicate a high
degree of randomness in the ciphertext.

Table 4 provides a comparison between three chaos-based text
ciphers and three classical ciphers. One can see that CBCA has
superior performance to its chaos-based peers as well as the clas-
sical ciphers. NPCR value more than 99.56 indicates that the cipher
has high sensitivity. Both CBCA and AES have two values higher
than the critical point. UACI has range to indicate if a cipher has



Table 6
Comparison of the proposed cipher against other image ciphers.

Algorithms GSE CC NPCR UACI Key space

CBCA (Lena) 7.9977 0.0003 99.61 33.48 2128(and can be extended)
CBCA (Baboon (Red)) 7.9991 �0.0015 99.65 33.43 –

CBCA (Small black box) 7.9993 0.0154 99.62 33.64 –
Ref. Liu et al. (2016) 7.9976 �0.003 99.61 33.33 2256

Ref. Niyat et al. (2017) 7.9972 0.0022 99.65 33.44 2128

Ref. Chai et al. (2017) 7.9971 �0.0016 99.62 33.45 2128

Ref. Tao et al. (2020) 7.9021 �0.0017 99.60 33.45 2400

Ref. Belazi et al. (2016) 7.9971 0.0113 99.61 33.66 2624

Ref. Wang et al. (2021) 7.9978 �0.0012 99.60 33.45 2688

Ref. Hosny et al. (2021) 7.9972 �0.0019 99.61 33.43 2320

Ref. Xian et al. (2022) 7.9999 0.0004 99.61 33.46 2512

Ref. Sayed et al. (2021) 7.9991 �0.0634 99.34 33.51 2396

Ref. Broumandnia (2019) 7.9993 0.02694 99.64 33.47 6:13� 10501
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good diffusion, which is between ½33:28� 33:56�. CBCA, the cipher
from Ref. Yasser et al. (2020) and AES have UACI scores within that
range. It indicates that CBCA provides similar diffusion to AES. In
addition, CBCA produces ciphertexts with higher randomness than
other ciphers. Moreover, the correlation between CBCA’s cipher-
texts is lowest one.

Table 5 provides another comparison between classical ciphers
and CBCA using different design parameters. As we see that CBCA
only requires two rounds to produce ciphertext with high diffusion
and confusion proprieties. The keyspace is larger than 128 bits and
users have the flexibility to select varying key sizes. The main pur-
pose of the key is to generate chaotic variables to generate chaotic
sequence. Thus, the keyspace can be extended to any size, It is not
limited to specific lengths like in classical ciphers. CBCA also
accommodates flexible block sizes by including the entire plaintext
in one block. Therefore, there is no need to divide the plaintext into
set of blocks. As previously mentioned, dividing to non-
overlapping blocks incurs some overhead, and the use of a block
cipher mode of operation is required to link the plaintext blocks
together to achieve good diffusion.

CBCA converts the key into chaotic variables using the GCV pro-
cess and the chaotic variable are then used to generate chaotic
sequences. Thus, the a separate key expansion (key schedule) algo-
rithm is not necessary in CBCA. The GCV process creates the chao-
tic variables, which have high sensitive to small changes.
Therefore, the confusion is achieved through the GCV process
and permutation operation. Classical ciphers use key expansion
to derive different version of keys from the master key to use each
one in each round to achieve the confusion property. CBCA has
simultaneous confusion and diffusion operations which leads to
faster encryption time and generates random ciphertexts. Finally,
the enhanced logistic chaotic map is used in CBCA which also con-
tributes to improved security.
6. Application in image encryption

In this section, we encrypt images using CBCA to showcase its
feasibility for multimedia security. Various images were selected
with different sizes, with each one converted to a single dimension
prior to encryption and decryption. Both color and gray images
were used in our experiments. Fig. 14 shows the plainimages and
corresponding cipherimages. CBCA can efficiently encrypt images
to produce noise-like outputs that contains no visual clue about
the original plainimage. To further evaluate CBCA as an image
cipher, we conducted multiple statistical tests that include his-
togram, correlation coefficient (CC), and global Shannon entropy
(GSE). When CC values are near-zero, a ciphertext has no correla-
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tion between adjacent pixels. GSE to measure the randomness
and distribution bits in the pixels. As each pixel is represented by
8 bits, the ideal GSE value is 8.

Fig. 15 shows the histogram of plainimages and their corre-
sponding cipherimages. We can see that the histogram of the
cipherimage is uniformly distributed (the peaks are almost equal).
Due to the uniform distribution, it is difficult to extract information
from the cipherimages. We generate histograms for three images
(Lena, Baboon, and small black box) encrypted using CBCA, all of
which have a uniform distribution.

In a good cipher, even when a specific plainimage is used, no
discernible patterns are produced, even in extreme cases when
the plainimage is entirely black or white. An encryption algorithm
is key-dependent as well as pixel-dependent. CBCA used two oper-
ations at the same time and the effect of both keys and pixels is
applied in both directions (start to end, end to start) during the
two rounds of encryption. Pixel locations and pixel values are
changed at the same time and depend on the secret key. A small
change to the secret key will lead to an entirely new cipherimage.
We choose black and white images to test CBCA against known
plaintext attacks (KPA) and chosen plaintext attacks (CPA).
Fig. 16 depicts the noise-like outputs after the black and white
images were encrypted. That confirms that CBCA is highly resistant
to KPA and CPA.

Users can also choose to generate secret keys related to the
plainimages for additional security, since having a plainimage-
related key would be closer to a one-time pad construction (one
key for one message). This can be easily performed by hashing
the plainimage, and using the message digest as (or to derive)
the secret key. However, similar to a one-time pad, using a
message-dependent key is less practical since it would incur a sig-
nificant computational overhead, which leads to increased latency
in communication. This stems from the fact that the key would
always need to be recomputed and redistributed each time a
new message needs to be sent.

Table 6 illustrates the statistical results for the Lena, Baboon
and black box images (images commonly used to evaluate image
ciphers). Results show that the proposed algorithm has good statis-
tical results, which implies a high level security. To study an image
cipher’s resistance to differential attacks and its plainimage sensi-
tivity, NPCR and UACI are widely used metrics. We evaluate CBCA
using both metrics and tabulated the results in Table 6. The NPCR
and UACI results show that the proposed algorithm is highly sensi-
tive to small changes to the plainimage, which leads to a com-
pletely different cipherimage. Furthermore, Table 6 shows the
comparison between the proposed cipher and other chaos-based
image encryption algorithms, where our algorithm has a good
trade-off in both security and efficiency as compared to its peers.
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Overall, results show that CBCA is suitable for securing all data
types that include binary data (e.g. regular text) and multimedia
(e.g. images).

7. Conclusion

In this paper, a new chaotic block cipher suitable for various
data types was proposed. The traditional logistic chaotic map
was enhanced by using a straightforward chaotification approach
to be more robust, notably in terms of its ergodicity. The enhanced
logistic map generates data sequences with a high degree of ran-
domness and entropy. The cipher’s chaotic variables are generated
using a flexible-length secret key, which are then used in both dif-
fusion and confusion operations. The resulting chaotic variables are
highly sensitive to secret key changes. As these chaotic variables
are used in both permutation and substitution, both operations
are thus key-dependent, making the cipher highly resistant to
cryptanalytic attacks. The proposed algorithm only requires two
rounds of encryption, and encrypts an entire plaintext block with-
out dividing it into smaller blocks. The cipher supports different
plaintext sizes with minimal effect on efficiency and security. We
demonstrate the effectiveness of the cipher for two data types (text
and images), whereby statistical and performance results show
that the cipher is both highly secure and efficient when compared
to other chaos-based encryption algorithms. For future work, we
will look into the combination between classical ciphers such as
AES and DES and improved chaotic maps to achieve improved
security and low computational complexity. Also, encryption of
data from sensors and drones is also a promising direction.
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