
A Dynamic and Efficient Representation

of Building-Block Layout

Wei-Ming Dai, Masao Sato, and Ernest S. Kuh

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, CA 94720

ABSTRACT

Dynamic layout representation is a key problem in
developing a building block layout system. We have unified
topological and geometrical representations, and developed
efficient methods to update topological information after
geometrical operations. The experimental results are very
promising. This representation is the key for information
flow in BEAR - a new building block layout system being
developed at U. C. Berkeley.

1. Introduction

While standard cell and gate array layout systems are
widely used, building block layout systems are still in the
research stage. What are the key problems restricting the
progress of the building block layout system?

Is routing the problem? Probably not, this area of lay-
out has received more attention than any other. The sequen-
tial routing (maze-running and line-search), as the most clas-
sic approach, has been used in VLSI design for a long time
[13]. Also the channel routing method has been extensively
studied and many software packages are available [9], (131. It
is nice to have one less track in a routed channel, but it will
not make or break the system.

Is placement the problem? Although automatic place-
ment is a relatively new area, many approaches have been
proposed [20]. For example, the min-cut placement method

uses a good bi-partitioning heuristics and works reasonably
well. In the worst case, we can place the blocks manually. So
the placement is not a key problem from a system point of
view.

In this paper, we will state one of the key problems in
developing a building block layout system - dynamic layout
representation. Although there are in the literature various
layout systems, the subject of dynamic representation has
not, been addressed. Before we explain what we mean by
dynamic, we discuss a global optimization step which, we
believe, is a crucial part of the next generation of building
bIock layout systems.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

Placement defines the capacity of the routing area
around the blocks and global routing defines the density (net,
assignment) of the routing area. Considering the detailed
routing, the desirability of a given global routing on a given
placement depends on the degree of the match of the capa-
city and the density. After placement and global routing, we
can change the density by rerouting or change the capacity
by global spacing (global compaction or decompaction). In
order to achieve high density of the final layout, we iterate
these two operations to obtain a satisfactory match of the
capacity and the density of the routing area before the
detailed routing.

Therefore, a dynamic layout representation should
satisfy the following requirements:

1. Represent placement and global routing.

2. Transfer the global routing information to detailed
routing efficiently.

3. Be easy to calculate the critical paths of the chip
dimensions.

4. Be easy to update (placement and global routing)
after global spacing or global re-routing.

, 2. A Survey of Layout Representations

The existing layout representations can be classified
into two categories: topological models and geometrical
models.

2.1. Topological models

A rectangular floor plan can be represented by a rec-
tangular dissection D (Fig. 2.1). A rectangular dissection can
be represented by a pair of mutually dual plane acyclic
digraphs called polar graphs: Gh = (V,,, En) and
G, = (V,, E,), where V, and V, represent the set of hor-

izontal lines and the set of vertical lines of D respectively.
There is an arc (vi, Vj) in Eli (or E,) if and only if the line
corresponding to vi and the line corresponding to Uj are the
top and bottom (or the left and right) sides of a rectangle
respectively. Notice G, and G, contain one source and one
sink (Fig. 2.2).

A rectangular dissection D can also be represented by
an undirected plane graph, called a floor plan graph.
G = (V, E), where V represents the intersections of D and
there is an edge (vi, vi) in E if and onIy if the intersection
corresponding to zli and the intersection corresponding to Uj
are adjacent (Fig. 2.3).

Paper 22.3

376

24th ACM/IEEE Design Automation Conference

0 1987 ACM 0738-100x/87/0600-0376$00.75

q
Fig. 2.1 Rectangular dissection D.

Fig. 2.2 Polar graph for D . Fig. 2.3 Floor plan graph for D.

The concepts of rectangular dissections and polar
graphs were introduced by Brooks et al. [3). Ohtsuki et al,
first applied these concepts to IC layout [12]. Zibert did
extensive work on polar graphs for floor planning optimiza-
tion, especially to hybrid layout [23]. The polar graphs were
later used to represent the placement of buiiding blocks [2],

PI, P% till, PI7 1191.
Otten formalized a structure restraint for rectangle

dissections, a slicing structure (Fig. 2.4 (a)), and character-
ized the polar graphs for slicing structures in terms of series
and parallel graphs [14], [15]. This restriction limits the
topology of floor plan or placement, complicates the global
spacing algorithms and wastes area when enforcing the slic-
ing structure at the routing stage. A feasible routing order
can be obtained for non-slicing structures (Fig. 2.4 (b)) by
introducing L-shaped channels [6].

(a) slicing structure (b) non-slicing structure

Fig. 2.4 Floor plan topology.

Lauther refined the polar graphs to reflect the conges-
tion of each line segment. These refined polar graphs (called
placement graphs) are used in the placement improvement
after global routing (lo], Ill]. In addition, floor plan graphs
(called channel graphs) are used for global routing. But
everything is restricted to slicing structures.

While Lauther assumed that all block shapes were rec-
tangular, Press extended the polar graphs (called channel
position graphs) to represent the placement of a subset of
rectilinear shaped blocks (shapes with arbitrary rectangles
removed from zero to four of the corners). Like Lauther, he
used a floor plan graph (called a channel intersection graph)
(Fig. 2.5) 1191.

h.

"5

(a) channel intersection graph (b) horizontal channel
position graph

Fig. 2.5 Prees’ graphs.

Even limiting block shapes and placement topology as
these authors did, keeping the polar graphs and the floor
plan graph consistent is not simpIe. Furthermore, none of
them raised the issue of updating global routing information
when the topology of the placement is changed.

The BBL system developed at U. C. Berkeley [4] uses
the concept of “bottlenecks”. A bottleneck exists between
two blocks or between a block and the chip boundary if
there is no other block in between (Fig. 2.6(a)). Bottlenecks
identify areas where congestion of routing is most likely to
occur and these are the targets for global spacing and global
re-routing. In addition to the bottleneck graphs (Fig. 2.6(b)),
floor plan graphs (in BBL called global routing graphs) are
used (Fig. 2.6(c)). There is no block shape limitation or
placement topology limitation in BBL. However, when mov-
ing blocks, it is not apparent that the correct updating of
both graphs can be guaranteed.

815 '16

(a) bottlenecks Br, BB, Bie

61 92 63
o-o-o

'5 * '6

(b) horizontal bottleneck graph (c) global routing graph

Fig. 2.6 Graphs in the BBL system.

Paper 22.3
377

2.2. Geometrical models

Instead of representing placement and global routing
information in topological models such as the polar graphs
and the floor plan graphs discussed above, we can use
geometrical models. Soukup et al, partitioned the empty
space into numerous small rectangles by extending all block
boundaries until they intersected with another block or the
chip boundary (Fig. 2.7) (211. Persky introduced a heuristic
approach to minimize the number of rectangles and to
obtain favorable aspect ratios for the rectangles: draw a sin-
gle horizontal or vertical line, whichever is shorter, from each
corner of every block until it intersects another block, a pre-
viously drawn line, or the chip boundary (Fig. 2.8) [17]. This
algorithm was first implemented in the LTXP system [5].
While Soukup’s model was developed for a sequential routing
scheme, Persky’s model was biased in favor of channel rout-
ing scheme. Both representations are static, that is, difficult
to update after block movement.

An interesting geometrical model has been proposed by
Wiesel et al. (221. Each routing layer was divided into a
different set of rectangles. On the horizontal layer, the rout-
ing area was divided into maximal horizontal strips. On the
vertical layer, it was divided into maximal vertical strips
(Fig. 2.9). As will be seen later, we make use of these two
sets of. rectangles in different ways without layer assumption.

Fig. 2.7 Soukup’s model. Fig. 2.8 Persky’s model.

(a) horizontal layer (b) vertical layer

Fig. 2.9 Wiesel’s model.

3. Unified Topological and Geometrical Representa-
tion

The difficulty of the layout representation arises when
updating topological information (eg. global routing informa-
tion) after geometrical operations. Our main contribution in
this area is to unify topological and geometrical representa-
tions to overcome. these problems.

3.1. Geometrical representation - tile planes

The entire area of a layout is covered with rectangles
referred to as tiles. There are two kinds of tiles: solid tiles,
which represent blocks, and space tiles, which represent
empty space for routing between the blocks.

Given a placement of rectilinear-shaped and arbitrary-
sized building blocks, we define two tile planes: the horizon-
tal tile plane, where all space tiles are maximal horizontal
strips, and the vertical tile plane, where all space tiles are
maximal vertical strips (Fig. 3.1 (a) and (b)). The tile planes
may be implemented using the corner stitching data struc-
ture [Ml.

In a tile plane, each space tile has four edges. Two of
them are called the spans of the tile (completely covered by
solid tiles); the other two, the sides of the tile. The size of
the spans and the sides of a space tile are referred to as the
widths and the lengths respectively (Fig. 3.2 (a)).

We define two particular classes of space tiles: dom-
inant tiles and bottleneck tiles. These concepts play key roles
in our unified representation. A space tile is called dominant
if none of its sides are covered by the side of its adjacent
space tiles (Fig. 3.1(a) and (b)). A space tile is called
bottleneck if both sides are covered by the sides of its adja-
cent space tiles (Fig. 3.1(c) and (d)). Note that dominant
tiles and bottleneck tiles in a tile plane are mutually disjoint
and there exist tiles which are neither dominant nor
bottIeneck.

solid tiles (blocks) dominant tiles space tiles

(a) dominant tiles in (b) dominant tiles in vertical
horizontal tile plane tile plane

bottleneck tiles

(c) bottleneck tiles in
horizontal tile plane

(d) bottleneck tiles in vertical
tile plane

wall
segment

wall
junction

(e) floor plan graph (f) empty room

Fig. 3.1 Tile planes and floor plan graph.

Paper22.3
378

If the width of a bottleneck tile is equal to zero, the tile
is regarded as a bottleneck line. More precisely, a bottleneck
line is a line segment which connects the left (top) edge of
one solid tile and the right (bottom) edge of another solid
tile on a vertical (horizontal) straight line without intersect-
ing any edge of solid tiles (Fig. 3.2 (b)).

1
length 1 I

width &side

(4 (b)
Fig. 3.2 (a) Bottleneck tile and (b) bottleneck line.

3.2. Topological representation - floor plan graphs

Using the dominant tile concept, a floor plan graph can
be efficiently derived from a pair of horizontal and vertical
tile planes. Corresponding to each horizontal or vertical dom-
inant tile, we draw a wall for the Roor plan graph. At each
intersection of a horizontal and a vertical dominant tile, we
draw a wall junction connecting the tiles’ walls. We call a
portion of a wall between two adjacent junctions a wall seg-
ment, and a region bounded by walls but containing no walls
a room (Fig. 3.1(e)). Most rooms contain solid tiles. Those
rooms that do not are called empty rooms (Fig. 3.1(f)).

As we mentioned before, similar graphs have been used
in many papers, but to the best of our knowledge, neither
precise definitions nor construction algorithms for such
graphs have been explicitly given in previous publications
except [6]. Even the examples they have illustrated were lim-
ited to a special class of topologies - without empty rooms.

3.3. The correspondences between tile planes and
floor plan graph

By the definition of tile plans and floor plan graphs, the
following theorem is obvious.

Theorem 1: There is one-toone correspondence
between a dominant tile in a tile plane and a wall in the
corresponding floor plan graph.

Later we will show how to dynamically update the floor
plan graph using this correspondence.

Sometimes a bottleneck tile (or line) in the horizontal
tile plane and a bottleneck tile (or line) in the vertical tile
plane may intersect. We call such an intersection region a
bottleneck intersection region. Depending on whether
bottleneck tiles or lines intersect, there are three kinds of
bottleneck intersection regions: bottleneck intersection rectan-

gles, lines, and points (Fig. 3.3).

Now we have the following theorem for characterizing
empty rooms.

Theorem 2: There is one-to-one correspondence
between a bottleneck intersection region in a tile plane and
an empty room in the corresponding floor plan graph (see
Fig. 3.1).

(a) bottleneck intersection rectangle

(b) bottleneck intersection line (c) bottleneck intersection point

Fig. 3.3 Bottleneck intersection regions.

In the following, we state yet another correspondence
between tile planes and the floor plan graph.

Theorem 3: Corresponding to each bottleneck tile or
line in a tile plane, there is only one wall segment in the
corresponding floor plan graph; the correspondence is one-
to-one if and only if there are no empty rooms.

The above three theorems characterize our unified
representation. As an example of the applications of the
unified representation, in Figure 3.4, we show how the floor
plan graph gets updated after we insert, delete, and move
blocks. The response time of these operations is very promis-
ing.

(a) initial placement (b) insert block A

(c) delete block B (d) move block C

Fig. 3.4 Interactive placement (illustrating dynamic updat-
ing of the floor plan graph).

Paper22.3
379

A pair of block adjacency graphs need not be con-
structed explicitly since the adjacency of the blocks can be
obtained efficiently via bottleneck tiles (Fig. 3.5). The
graphs play a similar role as polar graphs; for example, they
can be used to calculate the critical paths of the chip dimen-
sions.

(4 (b)
Fig. 3.5 (a) Horizontal and (b) vertical block adjacency graph.

3.4. Pseudo pins and local nets

Where do we store global routing information? It is too
much to record the topological paths of the nets in all the
tiles, ,On the other hand, if we attach the information to wall
segments or wall junctions of the floor plan graph, it is hard
to update when the placement topology is changed.

Since the bottleneck tiles correspond to the wall seg-
ments in the floor plan graph, we store the global routing
information on the bottleneck tiles. In this way, we have the
advantages of both topological and geometrical representa-
tion. Specially, as will be seen in the later sections, this
representation makes the job of dynamic updating of global
routing easier. Either the set of bottleneck tiles on the hor-
izontal tile plane or that on the vertical tile plane is
sufficient for specifying global routing information.

For each bottleneck side, a side of a bottleneck tile, we
record a list of net crossings called pseudo pins. From the
point of view of each tile, two pins or pseudo pins may not
be connected even though they belong to the same net glo-
bally. So we need the notion of local nets. Each pseudo pin
on the side of a tile belongs to three nets, namely, a global
net, an internal net (the net inside the tile), and an external
net (the net outside the tile) (Fig. 3.6).

pseudo pin

l global net = “a”

0 internal net = “as”

0 external net = “ar”

4. Dynamic Representation of Global Routing

4.1. Circles and chords

Since the global routing information is topological, we
introduce the concepts of circles and chords on tile planes.
A circle is a closure of a region surrounded by a set of block
boundaries and a set of horizontal and/or vertical bottleneck
sides on the tile planes. The circles formed by block boun-
daries and horizontal bottleneck sides are named H-circles
(Fig. 4.1(a)), and those formed by block boundaries and vert-
ical bottleneck sides, V-circles (Fig. 4.1(b)). A line drawn
from one point to another point on a circle is referred to as a
chord of the circle. For example, a bottleneck side is a chord.

The pins on the block boundaries and the pseudo pins
on the bottleneck sides are the global routing information
attached to the circle. When we insert chords in a circle, we
partition the circle or subdivide the nets; when we delete the
chords, we merge the circle or unify the local nets.

(4
Fig. 4.1 Circles.

(b)

By circle partition, we mean partitioning a circle into n
circles by inserting n -1 chords of the circle. Given a circle
C, as the result of inserting k non-intersecting chords,

l,, 42, ..-I 4, C is partitioned into k + 1 circles

Cl, cz, .-.a C;+ r (Fig. 4.2). When we insert a chord in a cir-
cle, for simplicity, we assume each local net crosses the chord
only once. Under this assumption, the’pseudo pins on the
chords are uniquely determined by the pins and pseudo pins
on C and the position of the end points of the chords. The
pseudo pins on the chords can be created efficiently on tile
planes by a modified plane-sweep method.

Circle unificatioon is the inverse of circle partition. We
unify n circles into one circle by deleting n - 1 chords in
the circle. For each pair of adjacent circles, we delete the
chord in between, unifying the local nets of its two sides
(Fig. 4.2).

The circle partition and circle unification are the basic
operations in the global routing update process. On the tile
planes implemented by corner stitching data structures,
these two operations can be performed in time and space
linear to the number of chords in the circle and number of
pins and pseudo pins on the circle.

Fig. 3.6 Pseudo pins and local nets.

Paper22.3
380

I----- e I _ o : pseudo pin

Fig. 4.2 Circle partition and circle unification.

4.2. Local updating method

After moving blocks, only some of the bottleneck tiles
may be affected. We call such bottleneck tiles mating
effective bottleneck tiles.

4.2.1. Moving effective bottleneck tiles

A bottleneck tile is said to be moving effective if its size
or its position relative to the attached blocks was changed or
the global routing information on their sides was altered.

To begin with, let us consider the simplest case: move a
single block.

After moving a block horizontally (vertically), the effect
on the horizontal (vertical) tile plane is simple: the horizontal
(vertical) bottleneck tiles attached to the block will be either
compacted (their lengths contracted), or stretched (their
lengths expanded) (Fig. 4.3 (a)). In this case, the global rout-
ing information attached to these bottleneck tiles remains
the same.

However, when the widths of bottleneck tiles are
changed, updating is not trivial. If the widths of the
bottleneck tiles are contracted, we call them narrowed
bottleneck tiles; if the widths are expanded, widened
bottleneck tiles (Fig. 4.3 (b)). When a block is moved in an
arbitrary direction, both widths and lengths of the
bottleneck tiles attached to the block may change (Fig. 4.3
(c)). We call those bottleneck tiles whose sizes did not
change but whose positions relative to the attached blocks
were changed, slid bottleneck tiles (Fig. 4.3 (d)).

Furthermore, if the relative positions of blocks do
change, the bottleneck tiles attached to the blocks will be
destroyed at the origin from which the block moves and will
be created at the destination to which the block moves (Fig.
4.3 (e)). In particular, if one bottleneck tile was created as
the result of destroying two other bottleneck tiles in the
same place, we call it a merged bottleneck tile; On the other
hand, if two bottleneck tiles were created as the result of
destroying one other bottleneck tile in the same place, we
call them split bottleneck tiles (Fig. 4.3 (f)).

Even though some bottleneck tiles are not attached to
the moving blocks, they may still be moving effective. The
bottleneck tiles which are passed by a moving block are
called passed bottleneck tiles (Fig. 4.3 (g)).

compact 1 1 stretch

destroy 1 1” create

Fig. 4.3 Moving effective bottleneck tiles.

Paper 22.3

381

4.2.2. Tile-wise updating

It can be verified that the different cases mentioned
above include all csses of moving effective bottleneck tiles.
So it is natural to consider a tile-wise updating strategy after
a block move.

By updating global routing, we mean validating the
pseudo pin information on the bottleneck sides. Thinking of
bottleneck sides as chords crossing some circles, updating is
nothing more than inserting the chords of the circles, or par-
titioning the circles.

Instead of inserting chords after the move, we could
insert equivalent chords before the move. By equivalent, we
mean the global routing information we try to obtain for the
chords (or the bottleneck sides) after the move can be
mapped from these corresponding chords before the move
(Fig. 4.4).

If the equivalent chords are inside a bottleneck tile
which forms a circle for the chords, the updating is simple:

equivalent chord

narrow and stretch

I widen and compact

(b)

Fig. 4.4 Tile-wise updating after moving a single block.

just look at the information on the sides and spans of the
bottleneck tile. Updating narrowed bottleneck tiles is an
example of such a case (Fig. 4.4 (a)). Otherwise, we need to
find a minimal circle which is crossed by the chords to per-
form the circle partition operation (Fig. 4.4 (b)). For updat-
ing most moving effective bottleneck tiles, such a local
search is required.

Since the local search is can not to be avoided, we may
prefer to update region-wise instead of tile-wise as discussed
above.

4.2.3. Region-wise updating

Updating after a single block move is the primitive
operation which will be used later on in more complicated
situations.

4.2.3.1. Updating after moving a single block

For the purpose of updating global routing information,
we currently assume a block can be moved in any direction
without overlapping other blocks. So for a given block
move, there is one minimal circle on a tile plane which con-
tains all moving effective bottleneck sides. We call this circle
moving eflective circle. On a tile plane, given the origin and
destination positions of the moving block, the moving
effective circle can be found efficiently by local search (again
time and space linear to the number of tiles inside the circle).

Let C denote the moving effective circle. Let p denote
the left end point of the upmost line segment of the moving
block boundary and q the right end point of the downmost
line segment. Let p1 and or denote these points before the
move and p2 and q2 after the move (Fig. 4.5 (a)).

In the following, we only describe the updating on the
horizontal tile plane. Updating on the vertical tile plane can
be done in a similar way. Notice that both tile planes are
updated independently.

The moving effective circle on the horizontal tile plane
is obviously an H-circle.

Without loss of generality, we assume the block moves
up. Extending a line through pz upward we will intersect the
circle at a point, say s. Similarly, extending a line through
q1 downward we will intersect the circle at a point, say t.
Notice that the global routing information on s -pl and
s -p2 are equivalent, as are q1 --t and q2 -t (Fig. 4.5 (a)).

The following are used to update global routing infor-
mation in the circle, C. Before the move, we obtain the
information on chords 8 -pl and q1 --t by circle unification
and circle partition. Then we move the block and map the
information from s -pl and q1 --t to s -p2 and q2 -t
respectively. The chord s -p2 -42 --t partitions C into C,
on its left and Cr on its right. Next we update the
bottleneck sides in Cl by circle partition (Fig. 4.5 (b)). The
bottleneck sides to be updated are nothing more than the
chords of Cl. Let r denote the left end point of the lowest
bottleneck side in C,. Finally, we unify the circle, C’,
s -p2 -q2 -r -t -s, and update the bottleneck sides
inside C ’ (Fig. 4.5 (c)).

Paper22.3
382

4.2.3.2. Global spacing

By global spacing, we mean global compaction and
decompaction or placement modifications performed after
global routing to obtain a better match of the placement and
the topological routing to minimize the final layout area.
Global spacing is much more effective for optimizing the final
layout compared with the local optimization of detailed rout-
ing. It is also efficient for achieving a better match between
the placement and the routing since no detailed wiring is
presented.

In contrast to the constraint-graph approach, the ridge

spacing method, operates on the tile planes, and is composed
of small steps which iteratively partition the layout into two
pieces, and performs cutting or expanding only on the spaces
which lie in between the two pieces. At each step, the topol-
ogy of the placement is preserved as much as possible.

The basic idea of ridge spacing was first proposed by
Akers et al. in 1970 [l]. For a brief survey of this method,
see 171. In 171, the ridge spacing problem has been precisely
formulated as the bottleneck path problem based on the con-

cepts of tile planes and space tile adjacency graphs. While
previous methods require 0 (ta’) time to find a monotonic
ridge (without optimization), we can find an optimal mono-
tonic ridge in 0 (n) time. Furthermore, we have general-
ized the spacing ridges to be non-monotonic , and developed
0 (nlogn) time algorithms for finding an optimal one.

4.2.3.3. Updating after spacing a single ridge

The problem of updating global routing after spacing a
single ridge can be translated into the problem of updating
after moving a single block. Among those blocks to be
moved, some are moving critical in the sense that they will
result in moving effective bottleneck tiles (Fig. 4.6 (a)). For a
given compaction or decompaetion ridge, the moving critical
blocks can be efficiently detected on tile planes. When we
compact a ridge, we first move these moving critical blocks
one by one and update global routing locally using the
methods described earlier (Fig. 4.6 (b)). We then move the
rest simply by changing the coordinates (Fig. 4.6 (c)).
Decompacting a ridge is done in the reverse order: reposition
moving critical blocks after we repositioning other blocks.

(b)
Fig. 4.5 Region-wise updating after moving a single block.

moving critical blocks-,

Fig. 4.6 Compaction (a)-(b)-(c) and decompaction (c)-(b)-(a).

Paper 22.3
383

4.3. Global mapping method

Since a horizontal tile plane or a vertical tile plane
alone holds complete global routing information, we may
update one of the tile planes when blocks are moved or nets
are re-routed. Later when needed, we translate the whole
global routing information on one tile plane to the other tile
plane. This translation process is referred to as global tnap-
ping. Global mapping is especially useful when updating glo
bal routing after spacing a sequence of complicated ridges in

one direction. Note that there is no need to update the hor-
izontal (vertical) tile plane after spacing a horizontal (verti-
cal) ridge because all the moving effective bottleneck tiles are
either compacted (when doing compaction) or stretched
(when doing decompaction).

4.4. Geometrical routing region definition

Besides updating global routing, our layout representa-
tion supports a wide range of operations throughout the
entire layout process. As we mentioned before, one of the
requirements for the data representation is to pass global
routing information to local routers: a channel router for
inter-cell routing and a sequential router for the intra-cell (or
over-the-cell) routing.

Passing global routing information to the sequential
router is trivial. We transfer global routing information to
channels by creating the floating pins on the open sides of
channels. This is done by using the global routing informa-
tion attached to the bottleneck sides around the open sides
of the channels. Any one of the tile planes is sufficient for
such operation.

5. Concluding Remarks

Not long ago, only a few places had people working on
building block layout systems, mainly the Japanese indus-
tries and the U. S. universities. Since ASIC (Application
Specific Integrated Circuit) is currently one of the main chal-
lenges in IC design, many building block layout systems are
now under development. If one does not work out dynamic
layout representation properly, no matter how powerful the
placement and routing techniques used, sooner or later one
will face the problem that the placement and routing com-
ponents can not be suitably integrated, thus the system will

not always work. This is the lesson we have learned from
our previous experience with the first generation of building
block layout system (BBL) developed at U. C. Berkeley [4].

The unified, dynamic, and e&ient layout representa-
tion discussed in this paper together with other significant
results on placement and routing motivated the development
of a new building-block layout system from scratch. This
new system named BEAR (Building-block Environment Allo-
cation and Routing system) is being developed using the C
language for color and black-and-white displays that support
the X window manager, which runs under 4.3 BSD UNIX.
EDIF will be our primary input and output (also CIF). The
preliminary results, especially the interactive features, indi-
cate the dynamic layout representation is very promising.

Acknowledgment

George Carvalho has contributed to the implementation of the lay-
out representation. This research was supported by the Semiconductor

Paper 22.3
384

Research Corporation under the Grant SRC-82-11-998 and National Sci-
ence Foundation under the Grant ECS-8506901.

References

PI

I31

H

151

1’31

I71

I81

PI

M

WI

P21

I131

I141

1151

11’31

1171

1181

WI

WI

I211

I221

1231

S. B. Akers, J. M. Geyer, and D. L. Roberts, “IC mask layout with a
single conductor layer,” in Proc. oj 7th Design Automation
Workshop, pp. 7-16, 1970.

K. D. Brinkmann and D. A. Mlynski, “Computer aided chip minimi-
zation for IC-layout, ” in Proc. of Int. Symp. on Circuits and Sys-
tems, pp. 656-653, 1976.

R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tut@ “The
dissection of rectangles into squares,” Duke Math. J., Vol. 7, pp.
312-340, 1940.

N. P. Chen, C. P. Hsu, and E. S. Kuh, “The Berkeley building-block
(BBL) layout system for VLSI design,” in Dig. Tech. Papers, IEEE
Int. Conf. on Computer-Aided DeeYgn, pp. 40-41, 1983.
B. W. Colbry and J. Soukup, “Layout aspects of the VLSI micropro
censor design,” in Proc. of 1982 IEEE Int. Symp. on Circuits and
Systems, pp. 1214-1228, 1982.

W. M. Dai, T. Assno, E. S. Kuh, “Routing region definition and ord-
ering scheme for building-block layout,” IEEE Trans. on Computer-
Aided Design of ICe and Syst., Vol. CAD-4, No 3, 1985.

W. M. Dai and E. S. Kuh, “Global spacing of building-block layout,”
to appear in Proc. of VLSI 1987, 1987.

K. Kani, H. Kawanishi, and A. Kishimoto, “ROBIN: A building
block LSI routing program, ” in Proc. of Int. Symp. on Circuits and
Systems, pp. 658660, 1976.

E. S. Kuh, Ed., “The speciat issue on routing and microelectronics,”
IEEE Trans. on Computer-Aided Design of Ice and Syet., Vol.
CAD-2, No. 4, Oct. 1983.

U. P. Lauther, “A min-cut placement algorithm for general cell
assemblies based on a graph representation, in Proc. o/ 16th Deaign
Automation Conf., pp. l-10, 1979.

U. P. Lauther, “Channel routing in a general cell environment,” in
Proc. of VLSI 1985, 1985.

T. Ohtsuki, N. Sugiyama, and H. Kawanishi, “An optimization tech-
nique for integrated circuit layout design,” in Proc. ICCST-Kyoto,
pp. 67-68, Sept. 1970.

T. Ohtsuki, ed., Layout design and verification, Advances in CAD for
VLSI, Vol. 4, North-Holland, Amsterdam, 1986.

R. H. J. M. Otten, “Complexity and diversity in IC layout design,”
in Proc. of Int. Conf. on Cizcuite and Computers, pp. 764-767, 1980.

R. H. 3. M. Otten, Layout Structures, IBM Research Report
RC9657, Thomas J. Watson Research Center, Yorktown Heights, N.
Y., 1982.

J. K. Ousterhout, “Corner Stitching: A Data-Structuring Technique
for VLSI Layout Tools,” IEEE Trans. on Computer-Aided Design of
ICs and Syst., Vol. CAD-3, No. 1, 1984.

G. Persky, C. Enger, and D. M. Selove, “The Hughes automated lay-
out system - automated LSI/VLSI layout based on channel rout-
ing,” in Proc. of 18th Design Automation Con/., pp. 22-28, 1981.

B. T. Press and C. W. Gwyn, “Methods for hierarchical automatic
layout of custom LSI circuit masks, ” in Proc. of 15th Design Auto-
mation Con/., pp. 206212, 1978.

B. T. Press and C. S. Chow, “Placement and routing algorithms for
topological integrated circuit layout, ” in Proc. of ht. Symp. on Cir-
cuits and Syetema, pp. 17-20, 1985.

B. T. Press and P. G. Karger, “Automatic placement, A review of
current techniques,” in Proc. of 28rd Design Automation Conf, pp.
622-629, 1986.

J. Soukup and J. Royle, “Cell map representation for hierarchical
layout,” in Proc. of l’lth Design Automation Conf.j pp. 591-594.

M. Wiesel and D. A. Mlynski, “An efficient channel model for build-
ing block LSI,” in Proc. oj ht. Symp. on Circuit8 and Systems, pp.
118121, 1981.

K. Zibert and R. &al, “On computer aided hybrid circuit layout,”
in Proc. Int. Symp. on Circuits and Systems, pp. 314-318, 1974.

