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ABSTRACT 

Dynamic layout representation is a key problem in 
developing a building block layout system. We have unified 
topological and geometrical representations, and developed 
efficient methods to update topological information after 
geometrical operations. The experimental results are very 
promising. This representation is the key for information 
flow in BEAR - a new building block layout system being 
developed at U. C. Berkeley. 

1. Introduction 

While standard cell and gate array layout systems are 
widely used, building block layout systems are still in the 
research stage. What are the key problems restricting the 
progress of the building block layout system? 

Is routing the problem? Probably not, this area of lay- 
out has received more attention than any other. The sequen- 
tial routing (maze-running and line-search), as the most clas- 
sic approach, has been used in VLSI design for a long time 
[13]. Also the channel routing method has been extensively 
studied and many software packages are available [9], (131. It 
is nice to have one less track in a routed channel, but it will 
not make or break the system. 

Is placement the problem? Although automatic place- 
ment is a relatively new area, many approaches have been 
proposed [20]. For example, the min-cut placement method 

uses a good bi-partitioning heuristics and works reasonably 
well. In the worst case, we can place the blocks manually. So 
the placement is not a key problem from a system point of 
view. 

In this paper, we will state one of the key problems in 
developing a building block layout system - dynamic layout 
representation. Although there are in the literature various 
layout systems, the subject of dynamic representation has 
not, been addressed. Before we explain what we mean by 
dynamic, we discuss a global optimization step which, we 
believe, is a crucial part of the next generation of building 
bIock layout systems. 
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Placement defines the capacity of the routing area 
around the blocks and global routing defines the density (net, 
assignment) of the routing area. Considering the detailed 
routing, the desirability of a given global routing on a given 
placement depends on the degree of the match of the capa- 
city and the density. After placement and global routing, we 
can change the density by rerouting or change the capacity 
by global spacing (global compaction or decompaction). In 
order to achieve high density of the final layout, we iterate 
these two operations to obtain a satisfactory match of the 
capacity and the density of the routing area before the 
detailed routing. 

Therefore, a dynamic layout representation should 
satisfy the following requirements: 

1. Represent placement and global routing. 

2. Transfer the global routing information to detailed 
routing efficiently. 

3. Be easy to calculate the critical paths of the chip 
dimensions. 

4. Be easy to update (placement and global routing) 
after global spacing or global re-routing. 

, 2. A Survey of Layout Representations 

The existing layout representations can be classified 
into two categories: topological models and geometrical 
models. 

2.1. Topological models 

A rectangular floor plan can be represented by a rec- 
tangular dissection D (Fig. 2.1). A rectangular dissection can 
be represented by a pair of mutually dual plane acyclic 
digraphs called polar graphs: Gh = (V,,, En) and 
G, = (V,, E,), where V, and V, represent the set of hor- 

izontal lines and the set of vertical lines of D respectively. 
There is an arc (vi, Vj) in Eli (or E,) if and only if the line 
corresponding to vi and the line corresponding to Uj are the 
top and bottom (or the left and right) sides of a rectangle 
respectively. Notice G, and G, contain one source and one 
sink (Fig. 2.2). 

A rectangular dissection D can also be represented by 
an undirected plane graph, called a floor plan graph. 
G = (V, E), where V represents the intersections of D and 
there is an edge (vi, vi) in E if and onIy if the intersection 
corresponding to zli and the intersection corresponding to Uj 
are adjacent (Fig. 2.3). 
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Fig. 2.1 Rectangular dissection D. 

Fig. 2.2 Polar graph for D . Fig. 2.3 Floor plan graph for D. 

The concepts of rectangular dissections and polar 
graphs were introduced by Brooks et al. [3). Ohtsuki et al, 
first applied these concepts to IC layout [12]. Zibert did 
extensive work on polar graphs for floor planning optimiza- 
tion, especially to hybrid layout [23]. The polar graphs were 
later used to represent the placement of buiiding blocks [2], 

PI, P% till, PI7 1191. 
Otten formalized a structure restraint for rectangle 

dissections, a slicing structure (Fig. 2.4 (a)), and character- 
ized the polar graphs for slicing structures in terms of series 
and parallel graphs [14], [15]. This restriction limits the 
topology of floor plan or placement, complicates the global 
spacing algorithms and wastes area when enforcing the slic- 
ing structure at the routing stage. A feasible routing order 
can be obtained for non-slicing structures (Fig. 2.4 (b)) by 
introducing L-shaped channels [6]. 

(a) slicing structure (b) non-slicing structure 

Fig. 2.4 Floor plan topology. 

Lauther refined the polar graphs to reflect the conges- 
tion of each line segment. These refined polar graphs (called 
placement graphs) are used in the placement improvement 
after global routing (lo], Ill]. In addition, floor plan graphs 
(called channel graphs) are used for global routing. But 
everything is restricted to slicing structures. 

While Lauther assumed that all block shapes were rec- 
tangular, Press extended the polar graphs (called channel 
position graphs) to represent the placement of a subset of 
rectilinear shaped blocks (shapes with arbitrary rectangles 
removed from zero to four of the corners). Like Lauther, he 
used a floor plan graph (called a channel intersection graph) 
(Fig. 2.5) 1191. 

h. 

"5 

(a) channel intersection graph (b) horizontal channel 
position graph 

Fig. 2.5 Prees’ graphs. 

Even limiting block shapes and placement topology as 
these authors did, keeping the polar graphs and the floor 
plan graph consistent is not simpIe. Furthermore, none of 
them raised the issue of updating global routing information 
when the topology of the placement is changed. 

The BBL system developed at U. C. Berkeley [4] uses 
the concept of “bottlenecks”. A bottleneck exists between 
two blocks or between a block and the chip boundary if 
there is no other block in between (Fig. 2.6(a)). Bottlenecks 
identify areas where congestion of routing is most likely to 
occur and these are the targets for global spacing and global 
re-routing. In addition to the bottleneck graphs (Fig. 2.6(b)), 
floor plan graphs (in BBL called global routing graphs) are 
used (Fig. 2.6(c)). There is no block shape limitation or 
placement topology limitation in BBL. However, when mov- 
ing blocks, it is not apparent that the correct updating of 
both graphs can be guaranteed. 

815 '16 

(a) bottlenecks Br, BB, . . . . Bie 

61 92 63 
o-o-o 

'5 * '6 

(b) horizontal bottleneck graph (c) global routing graph 

Fig. 2.6 Graphs in the BBL system. 
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2.2. Geometrical models 

Instead of representing placement and global routing 
information in topological models such as the polar graphs 
and the floor plan graphs discussed above, we can use 
geometrical models. Soukup et al, partitioned the empty 
space into numerous small rectangles by extending all block 
boundaries until they intersected with another block or the 
chip boundary (Fig. 2.7) (211. Persky introduced a heuristic 
approach to minimize the number of rectangles and to 
obtain favorable aspect ratios for the rectangles: draw a sin- 
gle horizontal or vertical line, whichever is shorter, from each 
corner of every block until it intersects another block, a pre- 
viously drawn line, or the chip boundary (Fig. 2.8) [17]. This 
algorithm was first implemented in the LTXP system [5]. 
While Soukup’s model was developed for a sequential routing 
scheme, Persky’s model was biased in favor of channel rout- 
ing scheme. Both representations are static, that is, difficult 
to update after block movement. 

An interesting geometrical model has been proposed by 
Wiesel et al. (221. Each routing layer was divided into a 
different set of rectangles. On the horizontal layer, the rout- 
ing area was divided into maximal horizontal strips. On the 
vertical layer, it was divided into maximal vertical strips 
(Fig. 2.9). As will be seen later, we make use of these two 
sets of. rectangles in different ways without layer assumption. 

Fig. 2.7 Soukup’s model. Fig. 2.8 Persky’s model. 

(a) horizontal layer (b) vertical layer 

Fig. 2.9 Wiesel’s model. 

3. Unified Topological and Geometrical Representa- 
tion 

The difficulty of the layout representation arises when 
updating topological information (eg. global routing informa- 
tion) after geometrical operations. Our main contribution in 
this area is to unify topological and geometrical representa- 
tions to overcome. these problems. 

3.1. Geometrical representation - tile planes 

The entire area of a layout is covered with rectangles 
referred to as tiles. There are two kinds of tiles: solid tiles, 
which represent blocks, and space tiles, which represent 
empty space for routing between the blocks. 

Given a placement of rectilinear-shaped and arbitrary- 
sized building blocks, we define two tile planes: the horizon- 
tal tile plane, where all space tiles are maximal horizontal 
strips, and the vertical tile plane, where all space tiles are 
maximal vertical strips (Fig. 3.1 (a) and (b)). The tile planes 
may be implemented using the corner stitching data struc- 
ture [Ml. 

In a tile plane, each space tile has four edges. Two of 
them are called the spans of the tile (completely covered by 
solid tiles); the other two, the sides of the tile. The size of 
the spans and the sides of a space tile are referred to as the 
widths and the lengths respectively (Fig. 3.2 (a)). 

We define two particular classes of space tiles: dom- 
inant tiles and bottleneck tiles. These concepts play key roles 
in our unified representation. A space tile is called dominant 
if none of its sides are covered by the side of its adjacent 
space tiles (Fig. 3.1(a) and (b)). A space tile is called 
bottleneck if both sides are covered by the sides of its adja- 
cent space tiles (Fig. 3.1(c) and (d)). Note that dominant 
tiles and bottleneck tiles in a tile plane are mutually disjoint 
and there exist tiles which are neither dominant nor 
bottIeneck. 

solid tiles (blocks) dominant tiles space tiles 

(a) dominant tiles in (b) dominant tiles in vertical 
horizontal tile plane tile plane 

bottleneck tiles 

(c) bottleneck tiles in 
horizontal tile plane 

(d) bottleneck tiles in vertical 
tile plane 

wall 
segment 

wall 
junction 

(e) floor plan graph (f) empty room 

Fig. 3.1 Tile planes and floor plan graph. 
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If the width of a bottleneck tile is equal to zero, the tile 
is regarded as a bottleneck line. More precisely, a bottleneck 
line is a line segment which connects the left (top) edge of 
one solid tile and the right (bottom) edge of another solid 
tile on a vertical (horizontal) straight line without intersect- 
ing any edge of solid tiles (Fig. 3.2 (b)). 

1 
length 1 I 

width &side 

(4 (b) 
Fig. 3.2 (a) Bottleneck tile and (b) bottleneck line. 

3.2. Topological representation - floor plan graphs 

Using the dominant tile concept, a floor plan graph can 
be efficiently derived from a pair of horizontal and vertical 
tile planes. Corresponding to each horizontal or vertical dom- 
inant tile, we draw a wall for the Roor plan graph. At each 
intersection of a horizontal and a vertical dominant tile, we 
draw a wall junction connecting the tiles’ walls. We call a 
portion of a wall between two adjacent junctions a wall seg- 
ment, and a region bounded by walls but containing no walls 
a room (Fig. 3.1(e)). Most rooms contain solid tiles. Those 
rooms that do not are called empty rooms (Fig. 3.1(f)). 

As we mentioned before, similar graphs have been used 
in many papers, but to the best of our knowledge, neither 
precise definitions nor construction algorithms for such 
graphs have been explicitly given in previous publications 
except [6]. Even the examples they have illustrated were lim- 
ited to a special class of topologies - without empty rooms. 

3.3. The correspondences between tile planes and 
floor plan graph 

By the definition of tile plans and floor plan graphs, the 
following theorem is obvious. 

Theorem 1: There is one-toone correspondence 
between a dominant tile in a tile plane and a wall in the 
corresponding floor plan graph. 

Later we will show how to dynamically update the floor 
plan graph using this correspondence. 

Sometimes a bottleneck tile (or line) in the horizontal 
tile plane and a bottleneck tile (or line) in the vertical tile 
plane may intersect. We call such an intersection region a 
bottleneck intersection region. Depending on whether 
bottleneck tiles or lines intersect, there are three kinds of 
bottleneck intersection regions: bottleneck intersection rectan- 

gles, lines, and points (Fig. 3.3). 

Now we have the following theorem for characterizing 
empty rooms. 

Theorem 2: There is one-to-one correspondence 
between a bottleneck intersection region in a tile plane and 
an empty room in the corresponding floor plan graph (see 
Fig. 3.1). 

(a) bottleneck intersection rectangle 

(b) bottleneck intersection line (c) bottleneck intersection point 

Fig. 3.3 Bottleneck intersection regions. 

In the following, we state yet another correspondence 
between tile planes and the floor plan graph. 

Theorem 3: Corresponding to each bottleneck tile or 
line in a tile plane, there is only one wall segment in the 
corresponding floor plan graph; the correspondence is one- 
to-one if and only if there are no empty rooms. 

The above three theorems characterize our unified 
representation. As an example of the applications of the 
unified representation, in Figure 3.4, we show how the floor 
plan graph gets updated after we insert, delete, and move 
blocks. The response time of these operations is very promis- 
ing. 

(a) initial placement (b) insert block A 

(c) delete block B (d) move block C 

Fig. 3.4 Interactive placement (illustrating dynamic updat- 
ing of the floor plan graph). 
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A pair of block adjacency graphs need not be con- 
structed explicitly since the adjacency of the blocks can be 
obtained efficiently via bottleneck tiles (Fig. 3.5). The 
graphs play a similar role as polar graphs; for example, they 
can be used to calculate the critical paths of the chip dimen- 
sions. 

(4 (b) 
Fig. 3.5 (a) Horizontal and (b) vertical block adjacency graph. 

3.4. Pseudo pins and local nets 

Where do we store global routing information? It is too 
much to record the topological paths of the nets in all the 
tiles, ,On the other hand, if we attach the information to wall 
segments or wall junctions of the floor plan graph, it is hard 
to update when the placement topology is changed. 

Since the bottleneck tiles correspond to the wall seg- 
ments in the floor plan graph, we store the global routing 
information on the bottleneck tiles. In this way, we have the 
advantages of both topological and geometrical representa- 
tion. Specially, as will be seen in the later sections, this 
representation makes the job of dynamic updating of global 
routing easier. Either the set of bottleneck tiles on the hor- 
izontal tile plane or that on the vertical tile plane is 
sufficient for specifying global routing information. 

For each bottleneck side, a side of a bottleneck tile, we 
record a list of net crossings called pseudo pins. From the 
point of view of each tile, two pins or pseudo pins may not 
be connected even though they belong to the same net glo- 
bally. So we need the notion of local nets. Each pseudo pin 
on the side of a tile belongs to three nets, namely, a global 
net, an internal net (the net inside the tile), and an external 
net (the net outside the tile) (Fig. 3.6). 

pseudo pin 

l global net = “a” 

0 internal net = “as” 

0 external net = “ar” 

4. Dynamic Representation of Global Routing 

4.1. Circles and chords 

Since the global routing information is topological, we 
introduce the concepts of circles and chords on tile planes. 
A circle is a closure of a region surrounded by a set of block 
boundaries and a set of horizontal and/or vertical bottleneck 
sides on the tile planes. The circles formed by block boun- 
daries and horizontal bottleneck sides are named H-circles 
(Fig. 4.1(a)), and those formed by block boundaries and vert- 
ical bottleneck sides, V-circles (Fig. 4.1(b)). A line drawn 
from one point to another point on a circle is referred to as a 
chord of the circle. For example, a bottleneck side is a chord. 

The pins on the block boundaries and the pseudo pins 
on the bottleneck sides are the global routing information 
attached to the circle. When we insert chords in a circle, we 
partition the circle or subdivide the nets; when we delete the 
chords, we merge the circle or unify the local nets. 

(4 
Fig. 4.1 Circles. 

(b) 

By circle partition, we mean partitioning a circle into n 
circles by inserting n -1 chords of the circle. Given a circle 
C, as the result of inserting k non-intersecting chords, 

l,, 42, ..-I 4, C is partitioned into k + 1 circles 

Cl, cz, .-.a C;+ r (Fig. 4.2). When we insert a chord in a cir- 
cle, for simplicity, we assume each local net crosses the chord 
only once. Under this assumption, the’pseudo pins on the 
chords are uniquely determined by the pins and pseudo pins 
on C and the position of the end points of the chords. The 
pseudo pins on the chords can be created efficiently on tile 
planes by a modified plane-sweep method. 

Circle unificatioon is the inverse of circle partition. We 
unify n circles into one circle by deleting n - 1 chords in 
the circle. For each pair of adjacent circles, we delete the 
chord in between, unifying the local nets of its two sides 
(Fig. 4.2). 

The circle partition and circle unification are the basic 
operations in the global routing update process. On the tile 
planes implemented by corner stitching data structures, 
these two operations can be performed in time and space 
linear to the number of chords in the circle and number of 
pins and pseudo pins on the circle. 

Fig. 3.6 Pseudo pins and local nets. 
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I----- e I _ o : pseudo pin 

Fig. 4.2 Circle partition and circle unification. 

4.2. Local updating method 

After moving blocks, only some of the bottleneck tiles 
may be affected. We call such bottleneck tiles mating 
effective bottleneck tiles. 

4.2.1. Moving effective bottleneck tiles 

A bottleneck tile is said to be moving effective if its size 
or its position relative to the attached blocks was changed or 
the global routing information on their sides was altered. 

To begin with, let us consider the simplest case: move a 
single block. 

After moving a block horizontally (vertically), the effect 
on the horizontal (vertical) tile plane is simple: the horizontal 
(vertical) bottleneck tiles attached to the block will be either 
compacted (their lengths contracted), or stretched (their 
lengths expanded) (Fig. 4.3 (a)). In this case, the global rout- 
ing information attached to these bottleneck tiles remains 
the same. 

However, when the widths of bottleneck tiles are 
changed, updating is not trivial. If the widths of the 
bottleneck tiles are contracted, we call them narrowed 
bottleneck tiles; if the widths are expanded, widened 
bottleneck tiles (Fig. 4.3 (b)). When a block is moved in an 
arbitrary direction, both widths and lengths of the 
bottleneck tiles attached to the block may change (Fig. 4.3 
(c)). We call those bottleneck tiles whose sizes did not 
change but whose positions relative to the attached blocks 
were changed, slid bottleneck tiles (Fig. 4.3 (d)). 

Furthermore, if the relative positions of blocks do 
change, the bottleneck tiles attached to the blocks will be 
destroyed at the origin from which the block moves and will 
be created at the destination to which the block moves (Fig. 
4.3 (e)). In particular, if one bottleneck tile was created as 
the result of destroying two other bottleneck tiles in the 
same place, we call it a merged bottleneck tile; On the other 
hand, if two bottleneck tiles were created as the result of 
destroying one other bottleneck tile in the same place, we 
call them split bottleneck tiles (Fig. 4.3 (f)). 

Even though some bottleneck tiles are not attached to 
the moving blocks, they may still be moving effective. The 
bottleneck tiles which are passed by a moving block are 
called passed bottleneck tiles (Fig. 4.3 (g)). 

compact 1 1 stretch 

destroy 1 1” create 

Fig. 4.3 Moving effective bottleneck tiles. 
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4.2.2. Tile-wise updating 

It can be verified that the different cases mentioned 
above include all csses of moving effective bottleneck tiles. 
So it is natural to consider a tile-wise updating strategy after 
a block move. 

By updating global routing, we mean validating the 
pseudo pin information on the bottleneck sides. Thinking of 
bottleneck sides as chords crossing some circles, updating is 
nothing more than inserting the chords of the circles, or par- 
titioning the circles. 

Instead of inserting chords after the move, we could 
insert equivalent chords before the move. By equivalent, we 
mean the global routing information we try to obtain for the 
chords (or the bottleneck sides) after the move can be 
mapped from these corresponding chords before the move 
(Fig. 4.4). 

If the equivalent chords are inside a bottleneck tile 
which forms a circle for the chords, the updating is simple: 

equivalent chord 

narrow and stretch 

I widen and compact 

(b) 

Fig. 4.4 Tile-wise updating after moving a single block. 

just look at the information on the sides and spans of the 
bottleneck tile. Updating narrowed bottleneck tiles is an 
example of such a case (Fig. 4.4 (a)). Otherwise, we need to 
find a minimal circle which is crossed by the chords to per- 
form the circle partition operation (Fig. 4.4 (b)). For updat- 
ing most moving effective bottleneck tiles, such a local 
search is required. 

Since the local search is can not to be avoided, we may 
prefer to update region-wise instead of tile-wise as discussed 
above. 

4.2.3. Region-wise updating 

Updating after a single block move is the primitive 
operation which will be used later on in more complicated 
situations. 

4.2.3.1. Updating after moving a single block 

For the purpose of updating global routing information, 
we currently assume a block can be moved in any direction 
without overlapping other blocks. So for a given block 
move, there is one minimal circle on a tile plane which con- 
tains all moving effective bottleneck sides. We call this circle 
moving eflective circle. On a tile plane, given the origin and 
destination positions of the moving block, the moving 
effective circle can be found efficiently by local search (again 
time and space linear to the number of tiles inside the circle). 

Let C denote the moving effective circle. Let p denote 
the left end point of the upmost line segment of the moving 
block boundary and q the right end point of the downmost 
line segment. Let p1 and or denote these points before the 
move and p2 and q2 after the move (Fig. 4.5 (a)). 

In the following, we only describe the updating on the 
horizontal tile plane. Updating on the vertical tile plane can 
be done in a similar way. Notice that both tile planes are 
updated independently. 

The moving effective circle on the horizontal tile plane 
is obviously an H-circle. 

Without loss of generality, we assume the block moves 
up. Extending a line through pz upward we will intersect the 
circle at a point, say s. Similarly, extending a line through 
q1 downward we will intersect the circle at a point, say t. 
Notice that the global routing information on s -pl and 
s -p2 are equivalent, as are q1 --t and q2 -t (Fig. 4.5 (a)). 

The following are used to update global routing infor- 
mation in the circle, C. Before the move, we obtain the 
information on chords 8 -pl and q1 --t by circle unification 
and circle partition. Then we move the block and map the 
information from s -pl and q1 --t to s -p2 and q2 -t 
respectively. The chord s -p2 -42 --t partitions C into C, 
on its left and Cr on its right. Next we update the 
bottleneck sides in Cl by circle partition (Fig. 4.5 (b)). The 
bottleneck sides to be updated are nothing more than the 
chords of Cl. Let r denote the left end point of the lowest 
bottleneck side in C,. Finally, we unify the circle, C’, 
s -p2 -q2 -r -t -s, and update the bottleneck sides 
inside C ’ (Fig. 4.5 (c)). 
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4.2.3.2. Global spacing 

By global spacing, we mean global compaction and 
decompaction or placement modifications performed after 
global routing to obtain a better match of the placement and 
the topological routing to minimize the final layout area. 
Global spacing is much more effective for optimizing the final 
layout compared with the local optimization of detailed rout- 
ing. It is also efficient for achieving a better match between 
the placement and the routing since no detailed wiring is 
presented. 

In contrast to the constraint-graph approach, the ridge 

spacing method, operates on the tile planes, and is composed 
of small steps which iteratively partition the layout into two 
pieces, and performs cutting or expanding only on the spaces 
which lie in between the two pieces. At each step, the topol- 
ogy of the placement is preserved as much as possible. 

The basic idea of ridge spacing was first proposed by 
Akers et al. in 1970 [l]. For a brief survey of this method, 
see 171. In 171, the ridge spacing problem has been precisely 
formulated as the bottleneck path problem based on the con- 

cepts of tile planes and space tile adjacency graphs. While 
previous methods require 0 (ta’) time to find a monotonic 
ridge (without optimization), we can find an optimal mono- 
tonic ridge in 0 (n) time. Furthermore, we have general- 
ized the spacing ridges to be non-monotonic , and developed 
0 (nlogn) time algorithms for finding an optimal one. 

4.2.3.3. Updating after spacing a single ridge 

The problem of updating global routing after spacing a 
single ridge can be translated into the problem of updating 
after moving a single block. Among those blocks to be 
moved, some are moving critical in the sense that they will 
result in moving effective bottleneck tiles (Fig. 4.6 (a)). For a 
given compaction or decompaetion ridge, the moving critical 
blocks can be efficiently detected on tile planes. When we 
compact a ridge, we first move these moving critical blocks 
one by one and update global routing locally using the 
methods described earlier (Fig. 4.6 (b)). We then move the 
rest simply by changing the coordinates (Fig. 4.6 (c)). 
Decompacting a ridge is done in the reverse order: reposition 
moving critical blocks after we repositioning other blocks. 

(b) 
Fig. 4.5 Region-wise updating after moving a single block. 

moving critical blocks-, 

Fig. 4.6 Compaction (a)-(b)-(c) and decompaction (c)-(b)-(a). 
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4.3. Global mapping method 

Since a horizontal tile plane or a vertical tile plane 
alone holds complete global routing information, we may 
update one of the tile planes when blocks are moved or nets 
are re-routed. Later when needed, we translate the whole 
global routing information on one tile plane to the other tile 
plane. This translation process is referred to as global tnap- 
ping. Global mapping is especially useful when updating glo 
bal routing after spacing a sequence of complicated ridges in 

one direction. Note that there is no need to update the hor- 
izontal (vertical) tile plane after spacing a horizontal (verti- 
cal) ridge because all the moving effective bottleneck tiles are 
either compacted (when doing compaction) or stretched 
(when doing decompaction). 

4.4. Geometrical routing region definition 

Besides updating global routing, our layout representa- 
tion supports a wide range of operations throughout the 
entire layout process. As we mentioned before, one of the 
requirements for the data representation is to pass global 
routing information to local routers: a channel router for 
inter-cell routing and a sequential router for the intra-cell (or 
over-the-cell) routing. 

Passing global routing information to the sequential 
router is trivial. We transfer global routing information to 
channels by creating the floating pins on the open sides of 
channels. This is done by using the global routing informa- 
tion attached to the bottleneck sides around the open sides 
of the channels. Any one of the tile planes is sufficient for 
such operation. 

5. Concluding Remarks 

Not long ago, only a few places had people working on 
building block layout systems, mainly the Japanese indus- 
tries and the U. S. universities. Since ASIC (Application 
Specific Integrated Circuit) is currently one of the main chal- 
lenges in IC design, many building block layout systems are 
now under development. If one does not work out dynamic 
layout representation properly, no matter how powerful the 
placement and routing techniques used, sooner or later one 
will face the problem that the placement and routing com- 
ponents can not be suitably integrated, thus the system will 

not always work. This is the lesson we have learned from 
our previous experience with the first generation of building 
block layout system (BBL) developed at U. C. Berkeley [4]. 

The unified, dynamic, and e&ient layout representa- 
tion discussed in this paper together with other significant 
results on placement and routing motivated the development 
of a new building-block layout system from scratch. This 
new system named BEAR (Building-block Environment Allo- 
cation and Routing system) is being developed using the C 
language for color and black-and-white displays that support 
the X window manager, which runs under 4.3 BSD UNIX. 
EDIF will be our primary input and output (also CIF). The 
preliminary results, especially the interactive features, indi- 
cate the dynamic layout representation is very promising. 
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