
0

:o
)f

2)

r-

5

of

4,

DATA BASE TASK GROUP
REPORT TO THE
CODASYL PROGRAMMING
LANGUAGE COMMITTEE

In October 1969, the CODASYL Programming Language
Committee authored the publication by the Data Base Task
Group of its report containing proposals for a Data Descrip­
tion Language and a Data Manipulation Language. Section 2
of that report is reprinted here. It introduces the concepts
embodied in the Data Description and Data Manipulation
Languages. Extracts from the Preface and the Introduction
to the report have also been included.

The complete Data Base Task Group Report contains
three additional sections detailing the syntax and semantics
of the Data Description Language and of the Data Manipula­
tion Language. The complete report is available at $4 prepaid
from the Association of Computing Machinery. Readers
are reminded that the Data Base Task Group Report does not
reflect approved language specifications.

1. EXTRACT FROM PREFACE AND INTRODUCTION

This report has been prepared by the Data Base Task Group

which is an ad hoc committee of the CODASY L Program­

ming Language Committee. The report details the recom­

mendation of the Data Base Task Group to its parent com­

mittee. [It consists of a proposal for a Data Description

Language and a Data Manipulation Language.]

The Data Description Language is a language for describ­

ing a database. The Data Manipulation Language is language

which, when associated with the facilities of a host language

such as COBOL, PL/1, ALGOL, JOVIAL, FORTRAN ... ,

allows manipulation of databases described by the Data

Description Language.

The specification of separate Data Description and Data

Manipulation Languages is significant in that it allows data­

bases described by the Data Description Language to be

independent of the host languages used for processing the

data. Of course, for this to be possible, the host language

processors must be able to interface with such independent

descriptions of data.

The objective of the Data Base Task Group in develop­

ing its proposals was to make it easier and more efficient

for programmers to store and retrieve data in secondary

storage by providing features which:

• allow data to be structured in the manner most suitable

to each application, regardless of the fact that some or

all of that data may be used by other applications -- such

flexibility to be achieved without requiring data re-

dundancy.

Due to technical problems, Mr. Paul Siegel's article on a
similar subject is being delayed to a future publication.

e allow more than one run-unit to concurrently retrieve or

update the data in the database.

• provide and permit the use of a variety of access methods

against an entire database or portions of a database.

• provide protection of the database against unauthorized

access of data and from untoward interaction of programs.

• allow the user to plan and implement his system as if he

had a virtual memory at his disposal.

• provide the Data Base Manager with the capability to

control the physical placement of data.

• allow the declaration of a variety of data structures

ranging from those in which no connection exists be­

tween data elements to network structures.

• allow the user to interact with the data while being re­

lieved of all of the mechanics of maintaining the struc­

tural associations which have been declared.

• allow programs to be as independent of the data as cur­

rent techniques will permit.

These features, then, provide both generality and flexi­

bility and allow the building and manipulation of structures

as complex as necessary for a given application.

Such complexity is not spurious. It allows concise and

efficient problem-modeling in a way that no single technique

could. In any one application, many different techniques

can be used effectively to help in solving the various aspects

of the overall problem. The Data Base Task Group approach

allows the use of appropriate techniques for each aspect,

while providing the discipline for interlocking the various

parts into a unified whole.

It is important to note that the Data Base Task Group's

proposals are oriented to the programmer. Specifically, the

DML is a language for programmers. It is not an inquiry

language intended for the non-programmer.

The Data Base Task Group recognized the need for an

inquiry language, but considers it essential that such a langu­

age be capable of interacting with the same databases that

are developed for routine, day to day processing. Because of

this, specification of an inquiry language has been deferred

in favor of providing the tools required by programmers to

build and maintain "databases that are available to, and

suitable for, processing by multiple applications." The pro­

posals in this report, however, provide a solid foundation

for building an inquiry system.

2.1 THE DATA DESCRIPTION LANGUAGE (DDL)

The DDL is the language used to declare a SCH EMA. A

SCHEMA is a description of a DATABASE, in terms of the

names and characteristics of the DAT A-ITEMS, RECOR OS,

AREAS, and SETS included in the database, and the rela­

tionships that exist and must be maintained between occur­

rences of those elements in the database.

11

The term DATA-ITEM has the same meaning as in
COBOL and may be a group data-item or an elementary
data-item.

A RECORD is essentially a group data-item and may
contain zero, one or more specific data-items. There may
be an arbitrary number of occurrences in the database of
each record-name specified in the schema for that database.
For example, there would be one occurrence of the record­
name PAYROLL-RECORD for each employee. This dis­
tinction between actual occurrences of a record and the
"type" or name of the record is an important one.

A SET is a name collection of records. Each set-name
specified in the schema must have one record "type" de­
clared as its OWNER and one or more record "types" de­
clared as its MEMBER records. There may be an arbitrary
number of occurrences in the database of each set-name
specified. Each occurrence of a set must contain one occur­
rence of its owner record and may contain an arbitrary num­
ber of occurrences of each of its member record "types."

An AREA is a named sub-division of a database and
may contain occurrences of one or more record and sets.
However, all occurrences, or portions of areas, may be
opened by a run-unit with USAGE MODES which permit,
or do not permit, concurrent run-units to open the same
area or portion of an area. An area may be declared in the
schema to be a TEMPORARY AREA. The effect of this is
to provide a different occurrence of the temporary area to
each run-unit opening it. At the termination of the run­
unit, the storage space involved becomes available for re-use.

A DA TA BASE consists of all the record occurrences, set
occurrences and areas which exist in secondary storage and
are controlled by a specific schema.

2.2 THE DATA MANIPULATION LANGUAGE (DML)

The DM Lis the language which the programmer uses to cause
data to be transferred between his program and the database.

The DML is not a complete language by itself. It relies on
a host language to provide a framework for it and to provide
the procedural capabilities required to manipulate data in
primary storage. The relationship between the DML and its
host language is discussed in Section 2.5.

2.3 RELATIONSHIP BETWEEN THE DDL AND DML

The relationship between the DDL and DM Lis the relation­
ship between declarations and procedure. The declarations
impose a discipline over the executable code and are to a
large extent substitutes for procedures written in the DM L
and the host language; that is, they are implicit procedures
which may be invoked by the execution of DML statements.

2.4 RELATIONSHIP BETWEEN DDL/DML AND THE
DATA BASE MANAGEMENT SYSTEM

Though this report is not a complete specification for a Data
Base Management System, it may be helpful to an under-

standing of the DDL/DM L to conceptualize a complete sys­
tem. The system presented is for pedagogic purposes only
and is illustrated by Diagram 1.

The numbered arrows in Diagram 1 trace a call for data
by user program 1, and are explained in the following. Calls
for data by other user programs are handled concurrently
by the Data Base Management System (DBMS), but this is
not shown in the diagram.

CONCEPTUAL- DATA BASE
MANAGEMENT SYSTEM

PRIMARY STORAGE

l1' + OPERATING SYSTEM

SECONDARY
STORAGE .(.3 SCHEMA SUB-SCHEMA -1 SUB-

/JI.
(OBJECT VERSION) (OBJECT VERSION) SCHEMA·

2 • • "1

-
DATABASE

USER-PROGRAM · "1 MANAGE· USER-PROGRAM -1

MENT
SYSTEM

I - 1

19 -DATABASE

t 7

SYSTEM
LOCATIONS

8
SYSTEM

SYSTEM !-+- LOCATIONS
BUFFERS

"' USER- WORKING USER-WORKING

\ AREA AREA

~ ~

DIAGRAM 1

'1' a call for data by a user program to the DBMS. All
calls for the services of the DBMS are made in the
DML.

'2' the DBMS analyzes the call and supplements the argu­
ments provided in the call itself with information con­
tained in the object version of the schema for the
database, and in the object version of the sub-schema
invoked by the user program originating the call. The
schema describes the database in terms of the charac­
teristics of the data as it appears in secondary storage
and the implicit and explicit relationship between data
elements. The sub-schema is a subset of the schema.
It describes the data known to the program invoking
it in the form in which the DBMS makes it available,
and expects to find it, in that program's USER WORK­
ING AREA (UWA). (In this conceptual system it is
assumed that the object version of the sub-schema
contains only the differences from the schema and is
not complete itself. The source form of the schema
and sub-schema are written in the DDL. A more de­
tailed discussion of the concept of schema and sub­
schema appears in Section 2.6.)

'3' on the basis of the call for its services and information

DATA BASE, Vol. 2, No. 2, Summer 1970

All
the

·gu-

rac­
rage
data

king
ible,
RK­
it is

1ema
nd is
1ema
~de­

sub-

it ion

obtained from the object version of the schema and
sub-schema, the DBMS requests physical 1/0 opera­
tions, as required to execute the call, from the operat­
ing System.

'4' the Operating System interacts with secondary storage.
'5' the Operating System transfers data between second­

ary storage and the System Buffers.
'6' the DBMS transfers data, as required to fulfill the call,

between the System Buffers and the UWA of the pro­
gram originating the call. Any required data trans­
formations between the description of the data as it
appears in secondary storage, and the description of
the data as it appears in a program's UWA, are handled
by the DBMS.

'7' the DBMS provides status information to the calling
program on the outcome of its call. The information
provided is: Currency status information, Error Status
Condition Codes, area-name, record-name, and area­
key.

'8' data in a program's UWA may be manipulated as re­
quired, using the facilities of the host language.

'9' the DBMS administers the System Buffers. The Sys­
tem Buffers are shared by all programs serviced by the
DBMS. User programs interact with the System Buf­
fers entirely through the DBMS.

2.5 RELATIONSHIP BETWEEN THE HOST
LANGUAGE AND THE DML

A users application program is written in a mixture of host
language statements and DML statements. The DML pro­
vides the ability to interact with the database in that it is the
language interface with the DBMS. All calls to and from the
database to retrieve data, to add new data, to modify exist­
ing data, or data relationships, and to delete existing data or
data relationships are written in the DML.

As a result of the successful execution of a call for data
included in the database, the data requested is delivered to
the UWA of the calling program and may then be referenced
and manipulated using the facilities of the host language. To
add new data or return modified data to the database, the
host language is used to initialize the appropriate values in
the UWA and the D.ML is used to call on the DBMS's services.

The host language, then, is the language used to manipu­
late data in primary storage. The host language processes or
provides the framework in which the DM L functions. And
the DM L is the interface language with the database.

DM L and host language statements are intimately mixed
in an application program. Indeed, the distinction between
them is conceptual. The two languages may be mixed freely
and there are no special "enter" or "exit" requirements from
one language to the other. Thus, from the programmers
point of view, he is using a single language - a language which
has the combined capabilities of the host language and DM L.

DATA BASE, Vol. 2, No. 2, Summer 1970

2.6 CONCEPT OF A SCHEMA AND SUB-SCHEMA

A schema consists of DDL statements and is a complete de­
scription of a database. It includes descriptions of all of the
areas, set occurrences, record occurrences and associated
data-items, as they exist in secondary storage.

A sub-schema also consists of DDL statements. It, how­
ever, need not describe the entire database but only those
areas, sets, records, and data-items which are known to one
or more specific programs. Further, it describes them in the
form in which they are known to those specific programs.

The concept of separate schema and sub-schema allows
the separation of the description of the entire database from
the description of portions of the database known to indi­
vidual programs. The concept is significant from several
points of view:

• An individual programmer need not be concerned with
the universe of the entire database but only with those
portions of the database which are relevant to the pro­
gram he is writing. Since the database may contain data
which is relevant to, and shared by, multiple applica­
tions, this may be important to the ease of writing, de­
bugging and maintaining programs.

• A program is limited to the subset of the schema that is
known to it via its sub-schema. To a large extent, this
automatically ensures the privacy and integrity of the rest
of the database from that program.

• A measure of data independence is provided for programs
in that certain changes may be made to the schema for
the database - and the database adjusted accordingly -
w_ithout affecting existing programs using that data. This
is possible because the sub-schema may vary in certain
important aspects from the schema of which it is a
subset.

A sub-schema may differ from a schema of which it is a
subset in several important respects:

• At the data-item level:
a. The characteristics of data-items may be different.
b. Privacy locks may be changed.
c. Entire entries for specific data-items may be omitted.
d. New data-items may be included where such data­

items are the names of group data-items whose ele­
mentary terms are included in the schema; or where
they are names of data-items which are defined as
part of a group data-item included in the schema.

• At the record level:
a. Entire entries for specific records may be omitted.
b. Privacy locks may be changed.
c. Record occurrences included in specific areas or por­

tions of areas may be omitted, while other record
occurrences of that record name are included.

• At the set level:
a. Entire entries for specific sets may be omitted.

13

b. Privacy locks may be changed.
• At the area level:

a. Entire entries for specific areas may be omitted.
b. Privacy locks may be changed.

A sub-schema must, however, be a consistent and logical
subset of the schema from which it is drawn.

The following additional points are also important to an
understanding of the concept of the schema and sub-schema:

• An object version of the source code schema may be
"compiled" independently of any user program or any
sub-schema.

• Object versions of a source code sub-schema may be
"compiled" independently of any user program and
stored in a library.

• An arbitrary number of sub-schema may be declared on
the basis of any given schema.

• The declaration of a sub-schema has had no effect on the
declaration of any other sub-schema and sub-schema may
overlap one another.

• Each sub-schema must be named.
• A user program invokes a schema or sub-schema by name

in its DATA DIVISION.
• The same schema or sub-schema may be named in the

DATA DIVISION of an arbitrary number of programs.
• Only the areas, records, data-items, and sets included in

the schema or sub-schema invoked by a program may be
referenced by that program.

2.7 THE USER WORKING AREA (UWA)

Conceptually, the UWA is a "loading and unloading zone"
where all data provided by the DBMS in response to a call
for data is delivered and where all data to be picked up by
the DBMS must be placed. Each program has its own UWA.
The data in the UWA of a program is not disturbed except in
response to a DML call or by the user program's host langu­
age procedures. There is no implication that UWA locations
are contiguous.

The UWA is set up by the DBMS in accordance with the
schema or sub-schema invoked in the DAT A DIVISION of a
program. Each data-item named in the schema or sub­
schema invoked will be assigned a location in the invoking
program's UWA and may be referenced by its declared name.
Where a sub-schema is invoked, the PICTURE AND USAGE
of data-items included in the sub-schema and, therefore, in
the UWA, may differ from the PICTURE AND USAGE of
those items in the schema for the database. The DBMS is
responsible for required conversions. Data-items included
in the database, but not in the sub-schema invoked, are not
assigned space and may not be referenced.

The DBMS must also provide for a number of "System
Communication Locations." Such locations are used for
run-unit/system interaction and are assigned space by the

14

DBMS. They are: AREA-KEY; AREA-NAME; RECORD­
NAM E; ERROR-STATUS; ERROR-SET; ERROR­
RECORD; and ERROR-AREA.

2.8 THE "DATA MANAGER" FUNCTION

In an environment where a database includes data which is
shared by many user programs, it becomes necessary for the
schema and sub-schema to be developed centrally. In such
a shared environment, a database, is, in a sense, a compro­
mise between the needs of the various user programs; and
the proper trade-offs can only be made centrally by a "Data
Manager."

On the basis of information as to the data required by
individual programs, statistics on usage of data, and response
requirements, the "Data Manager" must make decisions; for
example, on whether to repeat data redundantly and on what
relationships to build into the database; and, based on these
decisions, declare the areas, records, data-items, and sets
required; and, if necessary, restructure the database.

It is assumed here that the "Data Manager" is a specialist
person or group. Ideally, the function of the "Data Man­
ager" would be performed by the System. The Data Base
Task Group considered this but concluded that the tech­
niques required are not yet sufficiently well developed for
it to propose a standard for the information which would be
required as input. Thus the DDL does not include any
facility to provide usage and response statistics to the Sys­
tem. This does not preclude the "Data Manager" from using
"programmed aids" in doing his job.

2.9 CHARACTERISTICS OF SETS

The following is relevant to an understanding of the concept
of a set:

• Sets are ordered logical collections of associations of
records.

• An arbitrary number of sets may be declared in a schema.
• Each set must be named and must have one owner record

and one or more member records declared for it in the.
schema. (This does not apply to sets specified as DY­
NAMIC - See Section 2.15.)

• Any record may be declared in the schema as a member
record of one or more sets.

• Any record may be specified as both an owner record in
one or more sets and a member record in one or more
different sets.

• Each occurrence of a set includes one occurrence of its
owner record. In fact, the existence of the owner record
in the database is a condition of the existence of the set
occurrence and distinguishes that set occurrence from all
other occurrences of that set-name. Where, however, the
owner record occurrence is itself not unique, other in­
formation is required to uniquely identify the set occur­

rence.

DATA BASE, Vol. 2, No. 2, Summer 197

ncept

ns of

iema.
ecord
n the
DY-

mber

)rd in

more

of its
ecord
he set
im all
r, the
~r in-
ccur-

• A set occurrence which contains only an occurrence of its
owner record is known as an "empty set."

• In addition to an occurrence of its owner record, each
set occurrence may include an arbitrary number of occur­
rences of each of the member records declared for it in

the sc~ema.
• If a record which participates in a set is addressed, the

program is able to find:
a. its successor record occurrence in that set
b. its predecessor record occurrence in that set
c. its owner record occurrence in that set.

2.10 ORDERING OF SETS

Each set named in the schema must also have a SET ORDER
specified for it. The effect of this is to cause the DBMS to
control in accordance with the "set order" specified, the
logical order of the member record occurrences within each
set occurrence. The logical order of the member records of
a set is completely independent of the physical placement
of the records themselves. Thus, the same member record
occurrences could participate in occurrences of two dif­
ferent sets and be ordered differently in each of those sets.

The member record of each occurrence of a given set
may be ordered in one of several ways:

• SORTED in ascending or descending sequence based on
specified keys. The keys specified may be data-items in
each of the member records, the member records names
or their relative addresses, or any combination of these.

• In the order resulting from inserting new member record
occurrences into the set:
a. FIRST, that is, immediately after the owner record

occurrence. This is equivalent to LIFO.
b. LAST, that is, immediately before the owner record

occurrence. This is equivalent to Fl FO.
c. NEXT, PRIOR, that is, after or before another record

which is selected by the program adding or inserting
the record in the set.

2.11 AUTOMATIC AND MANUAL MEMBERSHIP
IN SETS

The membership of a record in any specific set (that is, in all
occurrences of that set) may be declared in the schema as
either AUTOMATIC or MANUAL. A record may be an
automatic member in some sets and a manual member in
other sets.

A record declared to be an automatic member of a set is
an unconditional member of an occurrence of that set.
Whenever an occurrence of such a record is added to the
database, it will be logically inserted into (that is, made a
member of) the appropriate occurrences of all the sets in
which it has been declared as an automatic member. It will
remain a member of those sets (but not necessarily in the

DATA BASE, Vol. 2, No. 2, Summer 1970

same occurrences of those sets) until it is deleted from the
database.

A record declared to be a manual member of a set is a
conditional member. Such a record will not be logically
inserted into any occurrence of the sets in which it has been
declared as a manual member except as a result of the
execution of an explicit INSERT command by a run-unit.
lt may be logically removed from any of the specific occur­
rences of sets in which it participates as a member. It re­
mains in the database and is still accessible, though not
through the sets in which it no longer participates.

2.12 SET "MODE"

The set concept may be implemented in several different
ways, each of which involves different trade-offs between
time and space. The particular trade-off which is appropriate
depends on the characteristics of the processing to be per­
formed. Since this varies from set to set and cannot be
forecast at the time the DBMS is developed, the DDL allows
selection, from among the approaches provided by the Sys­
tem, of the approach to be employed for any given set.

The DDL provides for an arbitrary number of set "modes."
Two are named and specified in this report. Other set
"modes" are at the discretion of the implementor of the
DBMS.

The two modes specified are CHAIN and POINTER
AR RAY. They correspond to embedded and non-embedded
pointers and are described in Sections 2.13 and 2.14, re­
spectively.

2.13 SETS DECLARED AS CHAINS

One method of implementing the set mode CHAIN is by
means of lists in which each element in the list points to the
next element. Since a set occurrence consists of one owner
record occurrence and "n" member record occurrences, the
owner record of a chain contains a pointer to the first mem­
ber record in the set which, in turn, points to the next
member record and so on until the last member record points
back to the owner record. This is illustrated in Diagram 2
which is a representation of a set occurrence with two mem­
ber records.

A chain then has the property that given any particular
record in the set all other participating records may be
accessed by following the pointers or "links" in the chain.
A chain is also an efficient "routing device" or "junction
box" in that having accessed a given record, it contains
pointers to all other chains in which it participates, and any
of these pointers may be followed.

Chains are always processable in either direction from any
given record in the chain. However, the linkage provided
between the records in a chain is only in the NEXT direction
unless the optional clause "LINKED TO PRIOR" is used.

15

When this caluse is used, additional links in the reverse
(that is, the PRIOR) direction are also provided. Diagram 3
is a representation of a chain which is "LINKED TO PRIOR."

CHAIN
WITH NEXT POINTERS

OWNER
RECORD

MEMBER
RECORD

N = NEXT POINTER

DIAGRAM 2

CHAIN

MEMBER
RECORD

WITH NEXT & PRIOR POINTERS

p

OWNER
RECORD

N = NEXT POINTER
P = PRIOR POINTER

MEMBER
RECORD

----ip

MEMBER
RECORD

~~~--~~ 

DIAGRAM 3 

In addition, the occurrences of any of the member record 
"types" specified for a set may be declared to be "LINKED 
TO OWNER." This causes each of the member record oc­
currence, enabling the owner record to be accessed directly. 
Diagram 4 illustrates this. 

16 

c H Al N WITH NEXT, PRIOR & 
OWNER POINTERS 

p 

OWNER 
RECORD 

N = NEXT POINTER 
P = PRIOR POINTER 
0 = OWNER POINTER 

DIAGRAM 4 

0 
MEMBER 
RECORD 

The unique identifiers assigned by the System to every 
record occurrence in the database are used as pointers. 
Space for a minimum of one pointer (the "NEXT" pointer) 
is required in each record and must be assigned by the Sys­
tem for each chain in which a record participates as owner 
or member. Additional pointers and space are required if 
the chain is PRIOR processable or members are "LINKED 
TO OWNER." 

The unique identifiers mentioned here are known as 
DATABASE-KEYS and are discussed in Section 2.30. 

2.14 SETS DECLARED AS POINTER ARRAYS 
A pointer array is the functional equivalent of a chain. 

In sets declared as pointer arrays, member records do not 
contain pointers to each other but only to their owner 
record occurrences. Each owner record occurrence, how­
ever, is associated with a list of all of its member record oc­
currences. In effect, the "NEXT" pointers contained in the 
member records of a chain are collected together in a list. 
Since this list of pointers may be logically ordered, any 
"SET ORDER" declared for a set is equally applicable to 
chains and pointer arrays. In addition, since the list of 
pointers may be processed in either direction and the mem­
ber records point to their owners, a pointer array is always 
NEXT and PRIOR processable and it is also "LINKED TO 
OWNER." Diagram 5 is a representation of a pointer array 
set. 

The list of member records developed for pointer arrays 
allows some logical operations to be performed on the mem-

DATA BASE, Vol. 2, No. 2, Summer 197 



' IC. 

~ry 

ffS. 

er) 
ys­

ner 
j if 

ED 

as 

not 
ner 
>W­

oe­
the 
list. 
any 
! to 
: of 
~m-

rays 
TO 

·ray 

rays 

~m-

POINTER ARRAY 

OWNER 
RECORD 

-------------., 
I 

LIST OF -M 1 

MEMBERS -M 1 

I 
--~~~~~~---------- __ .J 

...._----10 

MEMBER 
RECORD 

0 OWNER POINTERS 
M MEMBER POINTERS 

DIAGRAM 5 

MEMBER 
RECORD 

ber records listed, without the necessity of accessing the 
records themselves. Thus, for example, where membership 
in a set has a known meaning, logical AND and OR opera­
tions can be performed on the members of two or more sets 
or set occurrences without accessing any of the member 
records themselves. 

2.15 SETS DECLARED AS DYNAMIC POINTER 
ARRAYS 

A pointer array may optionally be declared DYNAMIC. A 
dynamic pointer array differs from an ordinary pointer array 
in several important respects. 

• It may not have any member records predeclared for it. 
• It is dynamic in the sense that any record occurrence in 

the database, other than occurrences of the owner record 
specified for a given set, is a potential manual member of 
such a set. It may be made an actual member by means 
of executing an explicit command inserting it; or may be 
removed from membership by executing an explicit com­
mand removing it. 

• It is temporary in that all such set occurrences created by 
a run-unit are destroyed at the termination of the run­
unit. That is, all pointers to the member records associ­
ated with the owner record are nulled, but the participat­
ing records themselves (members and owners) remain in 
the database and remain accessable. If, however, any of 
the records involved were assigned to "temporary areas," 
they would be deleted from the database. This latter 
point follows the rules for areas declared to be temporary. 

DATA BASE, Vol. 2, No. 2, Summer 1970 

• The System does not provide a pointer to their owner in 
member record occurrences. 

Diagram 6 is a representation of a pointer array set de­
clared to be "dynamic." 

DYNAMIC POINTER ARRAY 
.--~~~~~~~-------------., 

OWNER 
RECORD 

I 

LIST OF -M 1 

MEMBERS -M 1 

I 
~~~~~~~----------

__ _J

MEMBER
RECORD

M MEMBER POINTERS

DIAGRAM 6

MEMBER
RECORD

2.16 MAINTENANCE OF SET RELATIONSHIPS

The establishment and maintenance of all relationships be­
tween records, specified by means of declaring sets in the
schema, is a System responsibility.

Such maintenance is required whenever:

• A record which has been declared as an owner or member
in one or more sets is added to or deleted from the
database.

• A record is explicitly inserted or removed from a set.
• A record is modified in a way which changes its logical

position in the set.
• A record is modified in a way which changes the set oc­

currence in which it participates.

Programmers are not involved in the mechanics of this
process but must initialize with appropriate values those data
terms which are required by the System to perform its func­
tions. Such data-items are declared in the schema.

2.17 INDEXED SETS AND SEARCH KEYS

Any set declared to be SORTED may also be declared to be
INDEXED. This causes the System to build an index on the
basis of the sort keys specified for each occurrence of that
set. No control is provided in the DDL over the index de­
veloped; however, the index may be named. It is assumed
that implementors of the System will provide for such
control.

17

An arbitrary number of SEARCH KEYS may be declared

for a set regardless ot whether it is sorted or not. The argu­
ments for such SEARCH KEYS must be data-items included

in the member records of the set. The declaration of a

SEARCH KEY causes the System to develop some form of

indexing for each set occurrence in which member records,
for which SEARCH KEYS have been specified, participate.

The term "indexing" as used in this paragraph means any
technique which does not involve a complete scan of the

member records involved. It is not restricted to an "index"
in the usual sense. Optional control over the type of index­
ing developed is provided for in the DDL.

Where a set has been declared to be INDEXED, or

SEARCH KEYS have been specified for its members, func­

tions or procedures which require a search to be performed

on the basis of any argument for which indexing exists will
automatically employ the available indexing.

2.18 THE REPRESENTATION OF STRUCTURES

As stated in Section 1.2, one of the objectives of the Data

Base Task Group is "to allow data to be structured in the

manner most suitable to each application ... without requir­

ing data redundancy."

To achieve this, it must be possible to represent in sec­

ondary storage the associations between data elements which

logically exist relative to the performance of particular func­

tions; that is, to represent data structures of varying com­

plexity as storage structures.

The DDL, as described in Section 3, provides the facility

to declare such structures through the medium of the set.
The set is, in effect, a building block which allows various
data structures to be built. Sections 2.19, 2.20, and 2.21

show how the following data structure may be represented
by sets.

• Sequential Structures
• Tree Structures

• Network Structures

In addition, the absence of structure may be represented

by declaring records in the schema which do not participate
in sets.

2.19 REPRESENTATION OF A SEQUENTIAL DATA

STRUCTURE

A sequential data structure is one in which each element in

the structure, except the first and last, is related to the ele­

ment proceding it and the element following it. A list is an

example of a sequential data structure. As shown in Dia­

gram 7, a I ist may be a one-way I ist, where each element
points only to the next, a two-way list or a circular list.

Any single set is, in fact, a representation of a sequential

data structure or list. It is always circular and may be
specified as a one-way or two-way list.

18

SEQUENTIAL STRUCTURES

ONE
WAY
LIST

TWO
WAY
LIST

DIAGRAM 7

CIRCULAR
ONE WAY

LIST

Diagram 8 is a set representation of a sequential data

structure. It is also a diagrammatic representation for a set.

In such a diagram of a set:

SET REPRESENTATION OF
A SEQUENTIAL STRUCTURE

OWNER RECORD

{OF SET A)

SET A
r- -------------,
I

r--L·- --------
I

MEMBER 1
RECORD

(OF SET A)

DIAGRAM 8

N1
--, I

2' I
: I
t----J
I __ _,

• The arrow points from the owner record "type" to the
member record "type."

• There may be "n" occurrences of the owner record
"type."

• There is a "one-to-n" relationship between the owner

records and the member records. Thus, for each occur­
rence of the owner record, there may be "n" occurrences
of the member record.

DA TA BASE, Vo!. 2, No. 2, Summer 1970

13
bj

Et
K1
of
SE
so

za
ar
fu
fe
is~

In

It
ti

u
p1

ir

CC

b

O"

tc

rr
e!

