PILLAI COLLEGE OF ENGINEERING, NEW PANVEL (Autonomous) (Accredited 'A+' by NAAC) END SEMESTER EXAMINATION May 2023										
SEM-IV DRAINCH: Electronics and Computer Engineering										
Subject: - Engineering mathematics IV Time: 02.00 F									lours	
NB 1. 0.1 is compulsory Subject Code:-EC20)8	
2. Attempt any two from the remaining three questions									-	
3. Each Question carry 20 marks.										
Q.1.	Attempt All									Marks
a)	Use Kruskal's cost/weight.	algorith	am to find	minimum	spanning	tree. Also fin	d the minir	num		5
b)	Find Spearm students in M Student Marks in Mathematics Marks in DSA	an's Rar Iathema Zaraa 33 39	k Correlat tics (X) an Harshal 40 43	ion Coeffi d Data Str Sarvesh 30 28	cient (R) fc uctures & Rishiraj 59 55	or the followi Algorithm (Y Samruddha 34 33	ng data giv). Nobita 34 39	Shizuka 40 39	of 7	5
c)	Use Gram-Schmidt process to find an orthonormal basis from a given set of vectors $\{u_1, u_2, u_3\}$ where $u_1=(1,1,0)$, $u_2=(1,0,1)$ and $u_3=(0,1,1)$.									5
d)	Solve the given inhomogeneous recurrence relation $a_n=2a_{n-1}+n$ with initial condition $a_0=1$.								5	
	Attempt All									
Q.2.										
a)	Consider a set A={1,2,3,4,,5,6,8,10,15,30} with the relation of divisibility. Then draw the Hasse diagram of the poset (A,). Also find the maximal, maximum, minimal and minimum elements of the poset.									4
b)	Using Green's Theorem evaluate the integral $\oint_C (2ydx - 3xdy)$ where C is the curve given by $ z-1 =3$.								4	

c)	 For which values on 'n' is the complete graph K_n Eulerian. (Explain) For which values of 'm' & 'n' is the complete bipartite graph K_{m,n} is Semi-Eulerian. (Explain) Find the Hamiltonian circuit/ path in given graph if it exists. 									6			
	Consider the given data												
d)	Х	-3	-2	-1	0	1	2	3		6			
	Y	15.5	9.5	3.5	0.5	-0.5	0.5	3.5					
	Fit a second degree curve to the given data.												
Q.3.	Attempt All												
a)	Draw the complete graph K₅ and verify Handshaking lemma for it.									3			
b)	Use Cauchy's residue formula to evaluate $\oint_C \frac{dz}{z^2(z+1)}$ where C is a circle $ z =2$.									4			
c)	 The IQ given by random variable X for a certain population is normally distributed with mean 100 and standard deviation 15. i) Find the percentage of people having IQ between 85 and 115. ii) Find the percentage of people having IQ above 130. iii) Find P(X-100 <15) 									6			
d)	Let $A = \begin{bmatrix} 4 & 6 \\ 3 & 9 \end{bmatrix}$. Find the QR decomposition of A.												
Q.4.	Attempt All												
a)	Check whether the given graphs are isomorphic or not.									5			
b)	Find Taylor	's or Laurei	nt's series e	expressior	for f(z)	$=\frac{z-1}{z^2-2z-3}$ ir	the region 1	< z <3.		5			
c)	Show that I	D24 i.e. set	of divisors	of 24 form	ns a lat					5			
d)	Let X be a discrete random variable with following probability distribution function with												
	mean 2.85 . Determine m and n. Also find variance in X.									F			
	X	1	2	3		4	5	6					
	P(X=x)	0.2	0.3	0.1		m	n	0.2					