V	ers	ion	3.1	
- V	ers	ion	3.1	

Course Academic Plan

Course Code and Name: EEC401 Applied Mathematics IV

The academic resources available in PHCET, Rasayani

PHCET AMS	Evaluation and Assessment	PHCET Library	Value added courses and MOOC courses
Institute & Department Vision and Mission	Former IA question papers and solutions (prepared by faculty)	Former IA question papers solutions - hardcopy	Value Added Courses (VAC) are conducted throughout the semester & in the semester break
Lesson Plan, Practical plan, Content delivery (Planned and Actual)	MU end semester examination question papers and solutions (prepared by faculty)	MU end semester exam question paper & solutions - by faculty, hardcopy	Online courses from NPTEL, Coursera etc. are pursued throughout the semester
Student attendance and performance	Class notes and Digital Content for the subject	All text books, reference books, e -books mentioned in the syllabus & AAP	Video recording of Lecturescaptured in Light board studio at PHCET is made available.
Student details	Comprehensive question bank, MCQ, GA, PPT, Class Test papers	Technical journals and magazines for reference	Interactive smart board facility is available and lectures are recorded.
Departmental Academic plan	Academic Administration Plan &Beyond Syllabus Activity report	PHCET library is member of IITBombay Library	Expert lectures by Industry/Academia

1.a Course Objectives (As per Blooms Taxonomy)

Sr. No	Course Objectives
1	To understand line and contour integrals and expansion of complex valued function in a power series.
2	To understand the basic techniques of statistics for data analysis, machine learning and AI.
3	To understand probability distribution and expectations.
4	To understand the concepts of vector spaces used in the field of machine learning and engineering problems.
5	To understand the concepts of Quadratic forms and singular value decomposition.
6	To understand the concepts of calculus of variations.

1.b Course Outcome (CO) Mapping with Modules

Sr. No	COs	Related Modules
CO1	Use the concepts of Complex Integration for evaluating integrals, computing residues and evaluate various contour integrals.	Complex Integration
CO2	Apply the concept of Correlation and Regression to the engineering problems in data science, machine learning and AI.	Statistical Techniques
CO3	Apply the concept of probability and expectation for getting the spread of the data and distribution of probabilities.	Probability Distributions
CO4	Apply the concept of vector spaces and orthogonalization process in Engineering Problems.	Vector Spaces
CO5	Use the concept of Quadratic forms and singular value decomposition which are very useful tools in various Engineering applications.	Linear Algebra – Quadratic Forms
CO6	Find the extremals of the functional using the concept of Calculus of variation.	Calculus of Variations

1.c Mapping of COs with POs (mark 3: Strong, 2: Moderate, 1: Weak,)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1			1	1				1	2	
CO2	2	2	1	1	2	1	2			1	1	1
CO3	3	2	2	1	1	2	1	2	2	1	2	1

CO4	3	2	3	2	1	2	2	2	2	2	3	2
CO5	1	1	1	1	2						1	1
CO6	2	2	2	2	1		2		1	1	1	2

1.d Mapping of COs with PSOs

	PSO1	PSO2	PSO3	PSO4
C01	1	1	2	1
CO2	1	1	1	1
СО3	2	2	1	2
CO4	3	2	2	3
CO5	1	1	1	1
CO6	2	1	2	1

1.e Core Competency of the course

Categories	Mathematics	Basic Science & General Engg	Humanities & Soft Skill	Core Engg./ Technology - Design & Analysis	Multidisciplinary
Tick where applicable					

2.a Teaching Scheme (As specified by the University)

Course Name	Theory	Practical	Tutorial
Engineering Mathematics I	4 hr		1 hr

2.b Module Wise Teaching Hours and % Weightage in University Question Paper

Module No.	Module Title and Brief Details	Teaching Hrs. for each	% Weightage in University
		module	Question Papers
1	Calculus of Variations	6	20 M
2	Vector Spaces	6	20 M
3	Matrix Theory	6	20 M
4	Probability	6	20 M
5	Correlation	6	20 M
6	Complex Integration	6	20 M

2.c Prerequisite Courses

Sr. No.	Semester	Name of the course	Topics covered
1	_	AM I	Revision of Complex Number, Matrices, Differentiation
2	Ш	AM-II	Solving differential equations, double integration
3	=	AM-III	Line integrals , complex variables

2.d Relevance to Future Courses

	1	Solving Complex Engineering Problems	
--	---	--------------------------------------	--

2.e Industry Application of the course

Sr. No	Application
1	In the engineering field, matrices is usually applied in the magnetic fields vectors. It is also used in linear algebra which is one of the units of all the engineering courses. Matrices are a vital mathematical tool for calculating forces, vectors, tensions, masses, loads and a myriad of other factors that must be accounted for in engineering to ensure a safe and resource-efficient structure.

2	Vector calculus plays an important role in differential geometry and in the study of partial differential equations. It is used
	extensively in physics and engineering, especially in the description of electromagnetic fields, gravitational fields and fluid flow.
3	Probability in any many engineering fields are applicable to the testing and reliability assessment of engineered systems

3.a Past Results –

	Division		Divi	sion	Division	
Year	Initials of	% Result	Initials of	% Result	Initials of	% Result
	Teacher		Teacher		Teacher	

Topics which affect results	Module	Recommendations to overcome these issues & improve	
negatively	Number	result in future	
Calculus of variation	6	Student should solve more number of problems with	
	-	variety.	
Voctor Spaces	1	Student should solve more number of problems with	
vector spaces	+	variety.	
Complay Integration	1	Student should able to recall the correct formulas and	
Complex integration	1	accordingly apply while solving the examples.	

4.a Learning Resources – Books and E-Resources

4.b List of Text Books

Sr. No. Text book titles		Authors	Publisher	Edition	Module No
1 Applied		G V Kumbhojkar	C Jamnadas	3 rd	1-6
	Mathematics IV				

4.c List of Reference Books

Sr. No. Referencebook titles		Authors	Publisher	Edition	Module No
1	A Text book of Applied Mathematics	P N Wartikar & J N Wartikar	Vidyarthi Graha	8 th	1 to 6
2	Advanced Engg Mathematics	Erwin Kryszig	Wiley Eastern Limited	9 th	1 to 6

4.dList of E – Books

Sr. No.	Sr. No. E book titles		Publisher	Edition	Module No
1	Introduction to	Christopher C.	Bookboon	I	1
	Complex Number	Tisdell			

4.eWeb Links and Names of Magazines, Journals, E-journals

Sr.	Web-Links and Names of	Web-Links and	Module
No.	Journals and E-Journals	Names of	Nos.
	Recommended	Magazines	
		Recommended	
1	Matrix Theory	1) https://youtu.be/uc4BeCo2mX	3
		2) https://youtu.be/rSP62CNQ0xl	
		3) https://youtu.be/2R5SH7RemYE	
2	Complex integration	1) <u>https://youtu.be/OZAZImytcXE</u>	6
		2) https://youtu.be/4yC4IXcMKJg	

5. Concept Inventory

S. No.	Module	Topic Name	Specific Concepts Covered in this Topic	Recommended Text Book for this Topic	Starting Page	Ending Page	No. of Pages	Estimated Time in Hrs for Topic Completion	Approximate Weightage (Marks)
1		Complex Integration	Complex integration:	B1	10.1	10.12	12	1	20
	1		Cauchy's theorem		11.1	11.25	25	1	

			Taylor's and Laurent series		12.1	12.25	25	2	
			Zeros,singularities and poles, Residue theorem		13.1	13.60	60	2	
2	2	Statistical Techniques	Karl Pearson's coefficient of correlation	B1	8.1	8.11	11	2	20
			spearman's Rank correlation		8.12	8.21	9	2	
			Regression		9.1	9.23	23	2	
3	3	Probability	Baye's Theorem	B1	5.1	5.20	20	1	20
		Distributions	Random Variables		5.21	5.41	21	1	
			Expectation, mean and varianced		6.1	6.35	35	2	
			probability Distributions		7.1	7.63	63	2	
4	4	Linear Algebra – Vector Spaces	vectors in n- dimensional vector space properties	B1	2-1	2-25	25	1	
			vector space , Axioms, Linear Combination of vectors		3-1	3.25	25	1	
			Basis and dimension , to find Basis for Space		3.26	3.45	20	2	
			Norms and norms vector Spaces , Inner Products and Inner product Spaces, The Cauchy-Schwartz inequality ,Gram- Schmidt process		3.46	3.63	17	2	
5	5	Linear Algebra – Quadratic	Quadratic forms over real field	B1	4.1	4.36	36	1	20
		Forms	Rank, index and signature		4.40	4.49	10	1	
			Value class of quadratic form		4.52	4.73	21	1	
			Reduction to canonical form		4.75	4.86	11	1	
			Singular value decomposition		4.87	4.92	6	2	
6	6	Calculus of Variations	Euler's-Lagrange's equation,Solution of Euler's-Lagrange's equation Independent of variables	B1	1.01	1.10	10	2	20
			lsoperimetric problems		1.11	1.27	17	2	
			Functions involving higher order derivatives:Rayleigh- Ritz Method		1.28	1-34	20	2	

6.0 Web Links for Online Notes/YouTube/ Digital Content/Lecture Capture/NPTEL Videos

Sr. No.	Websites/ Links	Module No
1	https://www.youtube.com/watch?v=YPc8xZ1pViw	1
2	https://www.youtube.com/watch?v=YXmeH1yevkk	4

7. Recommended MOOC Courses like Coursera / NPTEL / Swayam/ edX etc.

Sr. No.	MOOC course link	Resource Person	Course duration	Certificate (Y/N)
1	Basic linear algebra	Dr. I.K.Rana	8 w	-

8. Study Material Distributed among Students

GA			Notes (Hand Written)	Digital content	PPT		MCQ		Ot	her
9. Lesso Lec No	Mod No	Planned Contents		Mapping with co's	Executed Date	Chapter No. / Page Nos./ Books/ Web Site	Reco Prior R L	mmended Viewing / eading ecture Io. (on LMS)		
1	5	Qua	adratic forms over real f	ield						
2	5	Reduction of quadratic form diagonal form using congruent transformation								
3	5	Rar qua	nk, index, signature and a	value class of	CO3					
4	5	Rec for	luction of quadratic forr m	n to canonical						
5	5	Sin	gular value decompositi	on						
6	5	Sin	gular value decomposition	on						
7	1	Line	e integral							
8	1	Сац	ichy's theorem							
9	1	Тау	lor's and laurent's series	5						
10	1	Тау	lor's and laurent's series							
11	1	Zer	oes, singularities and re	sidue						
12	1	Сац	ichy's residue theorem							
13	3	Вау	res' theorem							
14	3	Dise	crete and random variab	ble						
15	3	Cor	ntinuous random variabl	e	CO4					
16	3	Exp	ectation, variance							
17	3	Poi	sson distribution							
18	3	Nor	mal distribution							
19	2	Kar	Pearson's coefficient o	f correlation						
20	2	Spe	arman's rank correlatio	n	CO5					
21	2	Line	es of regression							

22	2	Lines of regression			
23	2	Curve fitting			
24	2	Curve fitting			
25	6	Euler's-Lagrange equation			
26	6	Independent of a variable and and another variable			
27	6	Independent of differentiation of a variable	CO1		
28	6	Isometric problems			
29	6	Several dependent variables			
30	6	Rayleigh-Ritz method			
31	4	Basics of vector			
32	4	Vector spaces over real field and it's properties			
33	4	subspaces	CO2		
34	4	Cauchy-Schwartz inequality			
35	4	Orthogonal subspaces			
36	4	Gram-Schmidt process			

10. Rubric for Grading and Marking of Term Work

	0 0					
Lecture +	Assignments	Tutorial	Lab / Practical	Lab Journal	Моос	Total
Practical			Performance	Assessment	Course	
(% Attendance)						
& Marks						

11. Practical/Assignment Plan

Practical/Assignment No.	cal/Assignment Module no. Title of experiment/assignment		Mapping with Cos	

12. Beyond Syllabus Activities for Gap Mitigation

No	Type of the	Activities	Details	– n	o of
	Activity		attendees,		guest,
			feedback,	mark	sheet,

	report

Academic Plan prepared by

Name of Faculty: Harshada Pratham
Sign:

Domain Co-ordinator	SIG Coordinator	HOD